
IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 36, NO. 5, SEPTEMBER 2006 601

Evolutionary Computation in
Bioinformatics: A Review

Sankar K. Pal, Fellow, IEEE, Sanghamitra Bandyopadhyay, Senior Member, IEEE, and Shubhra Sankar Ray

Abstract—This paper provides an overview of the application
of evolutionary algorithms in certain bioinformatics tasks. Differ-
ent tasks such as gene sequence analysis, gene mapping, deoxyri-
bonucleic acid (DNA) fragment assembly, gene finding, microar-
ray analysis, gene regulatory network analysis, phylogenetic trees,
structure prediction and analysis of DNA, ribonucleic acid and
protein, and molecular docking with ligand design are, first of all,
described along with their basic features. The relevance of using
evolutionary algorithms to these problems is then mentioned. These
are followed by different approaches, along with their merits, for
addressing some of the aforesaid tasks. Finally, some limitations of
the current research activity are provided. An extensive bibliogra-
phy is included.

Index Terms—Biocomputing, data mining, evolutionary algo-
rithm, molecular biology, soft computing.

I. INTRODUCTION

OVER the past few decades, major advances in the field
of molecular biology, coupled with advances in genomic

technologies, have led to an explosive growth in the biological
information generated by the scientific community. This deluge
of genomic information has, in turn, led to an absolute require-
ment for computerized databases to store, organize, and index
the data, and for specialized tools to view and analyze the data.

Bioinformatics can be viewed as the use of computational
methods to make biological discoveries [1]. It is an interdisci-
plinary field involving biology, computer science, mathematics,
and statistics to analyze biological sequence data, genome con-
tent and arrangement, and to predict the function and structure
of macromolecules. The ultimate goal of the field is to enable
the discovery of new biological insights as well as to create a
global perspective from which unifying principles in biology
can be derived [2]. There are three important subdisciplines
within bioinformatics.

1) Development of new algorithms and models to assess dif-
ferent relationships among the members of a large bio-
logical data set in a way that allows researchers to access
existing information, and to submit new information as
they are produced.

2) Analysis and interpretation of various types of data in-
cluding nucleotide and amino acid sequences, protein do-
mains; and protein structures.

Manuscript received May 7, 2004; revised January 7, 2005. This paper was
supported by the Council of Scientific and Industrial Research, New Delhi,
India, under the project “Knowledge Based Connectionist Data Mining System:
Design and Application” under Grant 22(0346)/02/EMR-II. This paper was
recommended by Associate Editor M. Last.

The authors are with the Machine Intelligence Unit, Indian Statistical Institute,
Kolkata 700108, India (e-mail: sankar@isical.ac.in; sanghami@isical.ac.in;
shubhra r@isical.ac.in).

Digital Object Identifier 10.1109/TSMCC.2005.855515

3) Development and implementation of tools that enable ef-
ficient access and management of different types of infor-
mation.

Recently, evolutionary algorithms (EAs), a class of randomized
search and optimization techniques guided by the principles of
evolution and natural genetics, have been gaining the attention
of researchers for solving bioinformatics problems. Genetic al-
gorithms (GAs) [3]–[9] evolutionary strategies (ES), and genetic
programming (GP) are the major components of EAs. Of these,
GAs are the most widely used. GAs are efficient, adaptive, and
robust search processes, producing near optimal solutions, and
have a large amount of implicit parallelism. Data analysis tools
used earlier in bioinformatics were mainly based on statistical
techniques such as regression and estimation. The role of GAs in
bioinformatics gained significance with the need to handle large
data sets in biology in a robust and computationally efficient
manner.

This paper provides a survey of the various evolutionary-
algorithm-based techniques that have been developed over the
past few years for different bioinformatics tasks. First, we de-
scribe the basic concepts of bioinformatics along with their
biological basis. Methodology for applying GAs to bioinfor-
matics tasks is also mentioned in Section II. In Section III, var-
ious bioinformatics tasks and different evolutionary algorithms
based methods available to address the bioinformatics tasks are
explained. Finally, conclusions and some future research direc-
tions are presented in Section IV.

II. BASIC CONCEPTS IN BIOINFORMATICS AND RELEVANCE

OF EVOLUTIONARY ALGORITHMS

First, we introduce the basic biological concepts required to
understand the various problems in bioinformatics, and then we
describe the relevance of EAs in bioinformatics with particular
emphasis on their application of GAs.

A. Basic Units of Cell Biology and Bioinformatics Tasks

Deoxyribonucleic acid (DNA) and proteins are biological
macromolecules built as long linear chains of chemical compo-
nents. A DNA strand consists of a large sequence of nucleotides,
or bases. For example there are more than three billion bases in
human DNA sequences. DNA plays a fundamental role in differ-
ent biochemical processes of living organisms in two respects.
First, it contains the templates for the synthesis of proteins,
which are essential molecules for any organism [10]. The sec-
ond role in which DNA is essential to life is as a medium to
transmit hereditary information (namely, the building plans for

1094-6977/$20.00 © 2006 IEEE

602 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 36, NO. 5, SEPTEMBER 2006

Fig. 1. Various parts of DNA.

proteins) from generation to generation. Proteins are responsible
for structural behavior.

The units of DNA are called nucleotides. One nucleotide con-
sists of one nitrogen base, one sugar molecule (deoxyribose),
and one phosphate. Four nitrogen bases are denoted by one
of the letters A (adenine), C (cytosine), G (guanine), and T
(thymine). A linear chain of DNA is paired to a complementary
strand. The complementary property stems from the ability of
the nucleotides to establish specific pairs (A-T and G-C). The
pair of complementary strands then forms the double helix that
was first suggested by Watson and Crick in 1953. Each strand,
therefore, carries all the information, and the biochemical ma-
chinery guarantees that the information can be copied over and
over again, even when the “original” molecule has long since
vanished.

A gene is primarily made up of a sequence of triplets of the
nucleotides (exons). Introns (noncoding sequence) may also be
present within the gene. Not all portions of the DNA sequences
are coding. A coding zone indicates that it is a template for a pro-
tein. As an example, for the human genome, only 3%–5% of the
sequence are coding; i.e., they constitute the gene. The promoter
is a region before each gene in the DNA that serves as an indica-
tion to the cellular mechanism that a gene is ahead. For example,
the codon AUG is a protein which codes for methionine and sig-
nals the start of a gene. Promoters are key regulatory sequences
that are necessary for the initiation of transcription. Transcrip-
tion is process in which ribonucleic acid (RNA) is formed from
a gene, and through translation, aminoacids are formed from
RNA. There are sequences of nucleotides within the DNA that
are spliced out progressively in the process of transcription and
translation. A comprehensive survey of the research done in this
field is given in [11]. In brief, the DNA consists of three types
of noncoding sequences (see Fig. 1) as follows:

1) Intergenic regions: Regions between genes that are ig-
nored during the process of transcription.

2) Intragenic regions (or Introns): Regions within the genes
that are spliced out from the transcribed RNA to yield the
building blocks of the genes, referred to as Exons.

3) Pseudogenes: Genes that are transcribed into the RNA and
stay there, without being translated, due to the action of a
nucleotide sequence.

Proteins are polypeptides, formed within cells as a linear
chain of amino acids [10]. Amino acid molecules bond with
each other by eleminating water molecules and forming
peptides. 20 different amino acids (or “residues”) are available,
which are denoted by 20 different letters of the alphabet. Each of
the 20 amino acids is coded by one or more triplets (or codons)
of the nucleotides making up the DNA. Based on the genetic
code, the linear string of DNA is translated into a linear string of

Fig. 2. Coding of amino acid sequence from DNA sequence.

amino acids; i.e., a protein via mRNA (messenger RNA) [10].
For example, the DNA sequence GAACTACACACGTGTAAC
codes for the amino acid sequence ELHTCN (shown in Fig. 2).

Three-dimensional (3-D) molecular structure is one of the
foundations of structure-based drug design. Often, data are
available for the shape of a protein and a drug separately, but
not for the two together. Docking is the process by which two
molecules fit together in 3-D space. Ligands are small molecules
such as a candidate drug and are used for docking to their macro-
molecular targets (usually proteins, sometimes DNA).

Different biological problems considered within the scope
of bioinformatics involve the study of genes, proteins, nucleic
acid structure prediction, and molecular design with docking. A
broad classification of the various bioinformatics tasks is given
as follows.

1) alignment and comparison of DNA, RNA, and protein
sequences;

2) gene mapping on chromosomes;
3) gene finding and promoter identification from DNA

sequences;
4) interpretation of gene expression and microarray data;
5) gene regulatory network identification;
6) construction of phylogenetic trees for studying evolution-

ary relationship;
7) DNA structure prediction;
8) RNA structure prediction;
9) protein structure prediction and classification;

10) molecular design and molecular docking.
Descriptions of these tasks and their implementation in evo-

lutionary computing (or genetic algorithmic) framework are
provided in Section III. Before that, the relevance of GAs in
bioinformatics is explained.

B. Relevance of Genetic Algorithms in Bioinformatics

Genetic algorithms [3]–[6], a biologically inspired technol-
ogy, are randomized search and optimization techniques guided
by the principles of evolution and natural genetics. They are
efficient adaptive, and robust search processes, producing near
optimal solutions, and have a large degree of implicit paral-
lelism. Therefore, the application of GAs for solving certain
problems of bioinformatics, which need optimization of com-
putation requirements, and robust, fast and close approximate
solutions, appears to be appropriate and natural [4]. Moreover,
the errors generated in experiments with bioinformatics data
can be handled with the robust characteristics of GAs. To some
extent, such errors may be regarded as contributing to genetic
diversity, a desirable property. The problem of integrating GAs
and bioinformatics constitutes a new research area.

GAs are executed iteratively on a set of coded solutions, called
population, with three basic operators: selection/reproduction,
crossover, and mutation. They use only the payoff (objective

PAL et al.: EVOLUTIONARY COMPUTATION IN BIOINFORMATICS: A REVIEW 603

function) information and probabilistic transition rules for mov-
ing to the next iteration. They are different from most of the
normal optimization and search procedures in four ways:

1) GAs work with the coding of the parameter set, not with
the parameters themselves.

2) GAs work simultaneously with multiple points, and not a
single point.

3) GAs search via sampling (a blind search) using only the
payoff information.

4) GAs search using stochastic operators, not deterministic
rules.

A GA typically consists of the following components:
1) a population of binary strings or coded possible solutions

(biol)ogically referred to as chromosomes);
2) a mechanism to encode a possible solution (mostly as a

binary string);
3) objective function and associated fitness evaluation

techniques;
4) selection/reproduction procedure;
5) genetic operators (crossover and mutation);
6) probabilities to perform genetic operations.

Of all the evolutionarily inspired approaches, GAs seem par-
ticularly suited to implementation using DNA, protein, and
other bioinformatics tasks [12]. This is because GAs are gener-
ally based on manipulating populations of bitstrings using both
crossover and pointwise mutation.

The main advantages using GAs are as follows.
1) Several tasks in bioinformatics involve optimization of

different criteria (such as energy, alignment score, and
overlap strength), thereby making the application of GAs
more natural and appropriate.

2) Problems of bioinformatics seldom need the exact opti-
mum solution; rather, they require robust, fast, and close
approximate solutions, which GAs are known to provide
efficiently.

3) GAs can process, in parallel, populations billions times
larger than is usual for conventional computation. The
usual expectation is that larger populations can sustain
larger ranges of genetic variation, and thus can generate
high-fitness individuals in fewer generations.

4) Laboratory operations on DNA inherently involve errors.
These are more tolerable in executing evolutionary al-
gorithms than in executing deterministic algorithms. (To
some extent, errors may be regarded as contributing to
genetic diversity—a desirable property.)

C. Example

Let us now discuss with an example the relevance of GAs in
bioinformatics. Most of the ordering problems in bioinformat-
ics, such as sequence alignment problem, fragment assembly
problem (FAP), and gene maping (GM), are quite similar to
traveling salesman problem (TSP best-known NP-hard ordering
problem) with notable differences. The TSP can be formally
defined as follows: Let 1, 2, . . . , n be the labels of the n cities
and C = [ci,j] be an n × n cost matrix where ci,j denotes the
cost of traveling from city i to city j. The TSP is the problem of

Fig. 3. Alignment of DNA fragments.

finding the shortest closed route among n cities, having as input
the complete distance matrix among all cities. A symmetric TSP
(STSP) instance is any instance of the TSP such that ci,j = cj,i

for all cities i, j. An asymmetric TSP (ATSP) instance is any
instance of the TSP that has at least one pair of cities such that
ci,j �= cj,i . The ATSP is a special case of the problem on which
we restrict the input to asymmetric instances. The total cost A
of a TSP tour is given by

A(n) =
n−1∑

i=1

ci,i+1 + cn,1. (1)

The objective is to find a permutation of the n cities which has
minimum cost.

The FAP deals with the sequencing of DNA. Currently,
strands of DNA longer than approximately 500 base pairs cannot
routinely be sequenced accurately. Consequently, for sequenc-
ing larger strands of DNA, they are first broken into smaller
pieces. In the shotgun sequencing method (to which this work
applies), DNA is first replicated many times, and then individ-
ual strands of the double helix are broken randomly into smaller
fragments. The assembly of DNA fragments into a consensus
sequence corresponding to the parent sequence constitutes the
“fragment assembly problem” [10]. It is a permutation problem,
similar to the TSP, but with some important differences (circular
tours, noise, and special relationships between entities) [10]. It
is NP-complete in nature.

Note that the fragmenting process does not retain either the
ordering of the fragments on the parent strand of DNA or the
strand of the double helix from which a particular fragment
came. The only information available in assembly stage is the
base pair sequence for each fragment. Thus, the ordering of the
fragments must rely primarily on the similarity of fragments and
how they overlap. An important aspect of the general sequencing
problem is the precise determination of the relationship and ori-
entation of the fragment. Once the fragments have been ordered,
the final consensus sequence is generated from the ordering. Ba-
sic steps with four fragments are shown below as an example
in Fig. 3. Here, the fragments are aligned in a fashion so that
in each column all the bases are the same. As an example, the
base in the sixth column is selected, after voting, as G to make
the consensus sequence TCACTGGCTTACTAAG.

Formulation of the FAP as a TSP using GA: although the
endpoints of the tour of TSP are irrelevant since its solution is a
circular tour of the cities, in the case of FAP, the endpoints are
relevant as they represent fragments on opposite ends of the par-
ent sequence. Moreover, the cities in the TSP are not assumed to
have any relationship other than the distances, and the ordering
is the final solution to the problem. In FAP, the ordering referred

604 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 36, NO. 5, SEPTEMBER 2006

to as “beads on a string,” is only an intermediate step; the layout
process uses the overlap data to position the bases within the
fragments relative to each other. Here, GAs can be applied. A
way of using it in FAP is explained as follows.

Step 1) Let 1, 2, . . . , j, . . . , n represent the indices of n frag-
ments in the spectrum of fragments. Pairwise re-
lationship (similarity) of a fragment with all other
fragments (oligonucleotides) is calculated and kept
in an n × n matrix. Dynamic programming gives
best alignment between two sequences (fragments).
In this method, each possible orientation is tried for
the two fragments, and the overlap, orientation, and
alignment are chosen to maximize the similarity be-
tween fragments.

Step 2) All the indices of fragments are then ordered ran-
domly with no repetition. Let f1, f2, . . . , fi , . . . , fn

be such an ordering of a sequence of n fragments,
where fi = j means that fragment j (in the fragment
set) appears in position i of the ordering. The fitness
function of this ordered sequence can be computed
using

F =
n−1∑

i=1

Wfi ,fi+1 (2)

where Wi,j is the pairwise overlap strength (similar-
ity) of fragments i and j in the ordered sequence, as
obtained in the n × n matrix.
Such an ordered sequence provides a genetic repre-
sentation of an individual chromosome in GA.

Step 3) In this way, P ordered sequences are generated,
where P is the size of the population of GA.

Step 4) GA is applied with this population and the following
operations.

Selection: Fitness of each sequence is evaluated as in
(2), and sequences with higher fitness are selected
with roulette wheel.

Crossover: Crossover is performed between two ran-
domly selected sequences for a given crossover
rate.

Mutation: For a given mutation rate, only that muta-
tion operator can be applied for which there will be
no repetition of fragment indexes in the sequence.

Elitist model: A new population is created at each
generation of GA. The sequence with highest
fitness from the previous generation replaces
randomly a sequence from this new generation,
provided the fitness of the fittest sequence in the
previous generation is higher than the best fitness
in this current generation.

Step 5) The best sequence of indices with maximum F value
is obtained from the GA. From this sequence of in-
dices, the corresponding sequence of fragments is
obtained using the overlapping information in the
n × n matrix of Step 1).

Step 6) This alignment of fragments is examined to deter-
mine the places where insertion or deletion error

likely occurred, and gaps or bases are then inserted
or deleted into the fragments to obtain their best
possible alignment. The resulting sequence is called
consensus sequence.

Note: The neighboring fragments in the resulting sequence
are assumed to be maximally overlapped—thereby ensuring in-
clusion in the resulting sequence as many fragments as possible.
The fitness function GA evaluating an individual selects the best
substring of oligonucleotides, or the chromosome; i.e., the one
composed of the most fragments, provided its length is equal to
the given length of the reference DNA sequence.

Different GA operators for the assembly of DNA sequence
fragments associated with the Human Genome project was stud-
ied in [13]. The sorted order representation and the permutation
representation are compared on problems ranging from 2–34 K
base pairs (KB). It is found that edge-recombination crossover
used in conjunction with several specialized operators performs
the best. Other relevant investigations for solving FAP using
GAs are available in [14] and [15].

III. BIOINFORMATICS TASKS AND APPLICATION OF EAs

We now describe the different problems and associated tasks
involved in bioinformatics, their requirements, and the ways in
which computational models can be formulated to solve them.
The classified tasks (as mentioned in Section II-A) are first
explained in this section, followed by a description of how GAs
and other evolutionary techniques are applied in solving them.

A. Alignment and Comparison of DNA, RNA, and
Protein Sequences

An alignment is a mutual placement of two or more sequences
which exhibit where the sequences are similar, and where they
differ. These include alignment and prediction of DNA, RNA,
protein sequences, and fragment assembly of DNA. An optimal
alignment is the one that exhibits the most correspondences and
the fewest differences. It is the alignment with the highest score,
but which may or may not be biologically meaningful. Basically,
there are two types of alignment methods: global alignment and
local alignment. Global alignment [16] maximizes the num-
ber of matches between the sequences along the entire length
of the sequence. Local alignment [17] gives a highest scoring
to local match between two sequences. Global alignment in-
cludes all the characters in both sequences from one end to
the other, and is excellent for sequences that are known to be
very similar. If the sequences being compared are not similar
over their entire lengths, but have short stretches within them
that have high levels of similarity, a global alignment may miss
the alignment of these important regions, and local alignment
is then used to find these internal regions of high similarity.
Pairwise comparison and alignment of protein or nucleic acid
sequences is the foundation upon which most other bioinformat-
ics tools are built. Dynamic programming (DP) is an algorithm
that allows for efficient and complete comparison of two (or
more) biological sequences, and the technique is known as the
Smith–Waterman algorithm [17]. It refers to a programmatic
technique or algorithm which, when implemented correctly,

PAL et al.: EVOLUTIONARY COMPUTATION IN BIOINFORMATICS: A REVIEW 605

effectively makes all possible pairwise comparisons between
the characters (nucleotide or amino acid residues) in two bio-
logical sequences. Spaces may need to be inserted within the
sequences for alignment. Consecutive spaces are defined as a
gap. The final result is a mathematically, but not necessarily
biologically, optimal alignment of the two sequences. A simi-
larity score is also generated to describe how similar the two
sequences are, given the specific parameters used.

A multiple alignment arranges a set of sequences in a manner
that positions thought to be homologous are placed in a common
column. There are different conventions regarding the scoring
of a multiple alignment. In one approach, the scores of all the
induced pairwise alignments contained in a multiple alignment
are simply added. For a linear gap penalty, this amounts to scor-
ing each column of the alignment by the sum of pair (SP-) scores
in this column [10]. Although it would be biologically mean-
ingful, the distinctions between global, local, and other forms of
alignment are rarely made in a multiple alignment. A full set of
optimal pairwise alignments among a given set of sequences will
generally overdetermine the multiple alignment. If one wishes
to assemble a multiple alignment from pairwise alignments, one
has to avoid “closing loops,” i.e., one can put together pairwise
alignments as long as no new pairwise alignment is included to a
set of sequences which is already part of the multiple alignment.

Methods: GAs are used to solve the problem of multiple
sequence alignment. Before we describe them, it may be men-
tioned that other optimization methods, such as simulated an-
nealing [18] and Gibbs sampling [19], are also used in this
regard. Simulated annealing can sometimes be very slow, al-
though it works well as an alignment improver. Gibbs sampling
is good in finding local multiple alignment block with no gaps,
but is not suitable in gapped situations.

It was first described in Sequence Alignment by Genetic Al-
gorithm (SAGA) [20] how to use GA to deal with sequence
alignments in a general manner (without DP), shortly before
a similar work by Zhang et al. [21]. The population is made
of alignments, and the mutations are processing programs that
shuffle the gaps using complex methods. In SAGA, each indi-
vidual (chromosome) is a multiple alignment of sequences. The
population size is 100 and there is no identical individual in
it. To create one of these alignments, a random offset is cho-
sen for all the sequences (the typical range is from 0–50 for
sequences 200 residues long) and each sequence is moved to
the right, according to its offset. The sequences are then padded
with null signs in order to have the same length. The fitness of
each individual (alignment) is computed as the score of the cor-
responding alignment. All the individuals are ranked according
to their fitness, and the weakest are replaced by new children.
Only a portion (e.g., 50%) of the population are replaced dur-
ing each generation. Two types of crossover, two types of gap
insertion mutation, 16 types of block shuffling mutation, one
block searching mutation, and two local optimal rearrangemet
mutation operators are used in SAGA. During initialization of
the program, all the operators have the same probability of
being used, equal to 1/22. An automatic procedure (dynamic
schedules, proposed by Davis [22]) for selecting operator has
been implemented in SAGA. In this model, an operator has a

probability of being used that is a function of the efficiency it
has recently (e.g., ten last generations) displayed at improving
alignments. The credit an operator receives when performing an
improvement is also shared with the operators that came before,
and may have played a role in this improvement. Thus, each
time a new individual is generated, if it yields some improve-
ment on its parents, the operator that is directly responsible for
its creation gets the largest part of the credit (e.g., 50%). Then
the operator(s) responsible for the creation of the parents also
get their share of the remaining credit (50% of the remaining
credit; i.e., 25% of the original credit), and so on. This report
of the credit goes on for some specified number of generations
(e.g., 4). After a given number of generations (e.g., 10) these
results are summarized for each of the operators. The credit of
an operator is equal to its total credit divided by the number of
children it generated. This value is taken as usage probability
and will remain unchanged until the next assessment, ten gener-
ations later. To avoid the early loss of some operators that may
become useful later on, all the operators are assigned a mini-
mum probability of being used (the same for all them, typically
equal to half their original probability, i.e., 1/44). The automat-
ically assigned probabilities of usage at different stages in the
alignment give a direct measure of usefulness or redundancy
for a new operator. SAGA is stopped when the search has been
unable to improve for some specified number of generations
(typically 100). This condition is the most widely used when
working on a population with no duplicates.

Other approaches [23]–[25] are similar to SAGA where, a
population of multiple alignment evolves by selection, combina-
tion, and mutation. The main difference between SAGA and re-
cent algorithms has been the design of better mutation operators.
A simple GA, applied in a straightforward fashion to the align-
ment problem, was not very successful [20]. The main devices
which allow GAs to efficiently reach very high quality solutions
are the use of: 1) a large number of mutation and crossover oper-
ators, and 2) their automatic scheduling. The GA based methods
are not very efficient at handling all types of situations. So it is
necessary to invent some new operators designed specifically for
the problem, and to slot them into the existing scheme. Most of
the investigations using GAs for sequence alignment are on dif-
ferent data sets and results are compared with that of CLUSTAL
W [26], so a clear comparison between the GA based methods
is not possible. A hybrid approach [27], [28], uses the searching
ability of GAs for finding match blocks, and dynamic program-
ming for producing close to optimum alignment of the match
blocks. This method is faster and produces better results than
pure GA and DP based approaches. Here, the population size is
determined as Q = mn/100, where m is the average sequence
length and n is the number of sequences.

In [29], it was pointed out that the combination of high-
performance crossover and mutation operators does not always
lead to a high performance GA for sequencing because of the
negative combination effect of those two operators. A high-
performance GA can be constructed by utilizing the positive
combination effect of crossover and mutation.

Other relevant investigations for solving multiple sequence
alignment using GAs are available in [30]–[34].

606 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 36, NO. 5, SEPTEMBER 2006

B. Gene Mapping on Chromosomes

Gene mapping is defined as the determination of relative posi-
tions of genes on a chromosome, and the distance between them.
A gene map helps molecular biologists to explore a genome. A
primary goal of the Human Genome Project is to make a se-
ries of descriptive diagram maps of each human chromosome
at increasingly finer resolutions. Two types of gene maps, viz.,
cytogenetic map and linkage map are generally used. A cyto-
genetic map, also known as a physical map, offers a physical
picture of the chromosome. In a cytogenetic map, the chromo-
somes are divided into smaller fragments that can be propagated
and characterized, and then the fragments are ordered (mapped)
to correspond to their respective locations on the chromosomes.
A genetic linkage map shows the relative locations (order) of
specific DNA markers along the chromosome.

Since EAs have been used for determining the genetic linkage
map, it is described here briefly. The genetic markers in a link-
age map are generally small, but precisely defined sequences and
can be expressed as DNA regions (genes) or DNA segments that
have no known coding function but whose inheritance pattern
can be followed. DNA sequence differences are especially use-
ful markers because they are plentiful and easy to characterize
precisely [10]. A linkage map is constructed by the following:

1) producing successive generations (chromosomes) of cer-
tain organisms through crossover (recombination), and

2) analyzing the observed segregation percentages of certain
characteristics in each chromosomal data to find the actual
gene order.

A linkage map shows the order and relative distance between
genes, but has two drawbacks [10]. First, it does not tell the
actual distance of genes, and second, if genes are very close,
one can not resolve their order, because the probability of sepa-
ration is so small that the observed recombinant frequencies are
all zero. The closer two genes are, the lower the probability that
they will be separated during the DNA repair or replication pro-
cess, and hence the probability is greater that they will be inher-
ited together. For example, suppose a certain stretch of DNA has
been completely sequenced, giving us a sequence S. If we know
which chromosome S came from, and if we have a physical map
of this chromosome, we could try to find one of the map’s mark-
ers in S. If the process succeeds, we can locate the position of
S in the chromosome. The best criterion to quantify how well a
map explains the data set is the multipoint maximum likelihood
(exploiting the data on all markers simultaneously) of the map.
Given a probabilistic model of recombination for a given family
structure, a genetic map of a linkage group, and the set of avail-
able observations on markers of the linkage group, we can define
the probability that the observations may have occurred given the
map. This is termed the likelihood of the map. The likelihood is
only meaningful when compared to the likelihood of other maps.

The problem of finding a maximum likelihood genetic map
can be described as a double optimization problem. For a given
gene order, there is the problem of finding recombination prob-
abilities (crossover probabilities) that yield a maximum multi-
point likelihood; then, one must find an order that maximizes
this maximum likelihood. The first problem is solved by us-
ing the expectation maximization (EM) algorithm. The second

problem is more difficult, because the number of possible orders
to consider for N markers is N !/2. This type of combinatorial
problem can be handled efficiently by evolutionary algorithms.
The problem of finding an order of genes that maximizes the
maximum multipoint likelihood is equivalent to the symmet-
ric TSP. One can simply associate one imaginary city to each
marker, and define as the distance between two cities the inverse
of the elementary contribution to the log-likelihood defined by
the corresponding pair of markers.

Methods: The method of genetic mapping described in [35]
is embodied in a hybrid framework that relies on the statisti-
cal optimization algorithms (e.g., expectation maximization) to
handle the continuous variables (recombination probabilities),
while GAs handle the ordering problem of genes. The efficiency
of the approach lies critically in the introduction of greedy local
search in the fitness evaluation of the GA, using a neighborhood
structure inspired by the TSP. A population size ranging from
25–250 has been used for number of markers between 10–29.

In gene mapping problem, Gunnels et al. [36] compared GAs
with simulated annealing (SA), and found that the GA-based
method always converges to a good solution faster since its
population-based nature allows it to take advantage of the extra
information to construct good local maps that can then be used
to construct good global maps.

In canonical GAs with the fixed map it is difficult to design the
map without a priori knowledge of the solution space. This is
overcome in [37], where GAs using a coevolutionary approach
are utilized for exploring not only within a part of the solution
space defined by the genotype-phenotype map, but also with the
map itself. Here, the genotype-phenotype map is improved adap-
tively during the searching process for solution candidates. The
algorithm is applied to three-bit deceptive problems as a kind of
typical combinatorial optimization problem. The difficulty with
canonical GAs can be controlled by the genotype-phenotype
map, and the output shows fairly good performance.

Relevant investigation for gene mapping using GAs is also
available in [38].

C. Gene Finding and Promoter Identification From
DNA Sequences

Automatic identification of the genes from the large DNA
sequences is an important problem in bioinformatics [39]. A
cell mechanism recognizes the beginning of a gene or gene
cluster with the help of a promoter and is necessary for the
initiation of transcription. The promoter is a region before each
gene in the DNA that serves as an indication to the cellular
mechanism that a gene is ahead. For example, the codon AUG
(which codes for methionine) also signals the start of a gene.
Recognition of regulatory sites in DNA fragments has become
particularly popular because of the increasing number of
completely sequenced genomes and mass application of DNA
chips. Experimental analyses have identified fewer than 10% of
the potential promoter regions, assuming that there are at least
30 000 promoters in the human genome, one for each gene.

Methods: Using GA, Kel et al. [40] designed sets of appro-
priate oligonucleotide probes capable of identifying new genes
belonging to a defined gene family within a cDNA or genomic

PAL et al.: EVOLUTIONARY COMPUTATION IN BIOINFORMATICS: A REVIEW 607

library. One of the major advantages of this approach is the
low homology requirement to identify functional families of
sequences with little homology.

Levitsky et al. [41] described a method for recognizing
promoter regions of eukaryotic genes with an application on
Drosophila melanogaster. Its novelty lies in realizing the GA to
search for an optimal partition of a promoter region into local
nonoverlapping fragments, and selection of the most significant
dinucleotide frequencies for the fragments.

The method of prediction of eukaryotic Pol II promoters from
DNA sequence [42] takes advantage of a combination of ele-
ments similar to neural networks and GAs to recognize a set of
discrete subpatterns with variable separation as one pattern: a
promoter. The neural networks use, as input, a small window of
DNA sequence, as well as the output of other neural networks.
Through the use of GAs, the weights in the neural networks are
optimized to discriminate maximally between promoters and
nonpromoters.

D. Interpretation of Gene Expression and Microarray Data

Gene expression is the process by which a gene’s coded in-
formation is converted into the structures present and operating
in the cell. Expressed genes include those that are transcribed
into mRNA and then translated into protein, and those that are
transcribed into RNA but not translated into protein (e.g., trans-
fer and ribosomal RNAs). Not all genes are expressed, and gene
expression involves the study of the expression level of genes
in the cells under different conditions. Conventional wisdom is
that gene products which interact with each other are more likely
to have similar expression profiles than if they do not [43].

Microarray technology [44] allows expression levels of thou-
sands of genes to be measured at the same time. A microarray
is typically a glass (or some other material) slide, on to which
DNA molecules are attached at fixed locations (spots). There
may be tens of thousands of spots on an array, each containing
a huge number of identical DNA molecules (or fragments of
identical molecules), of lengths from twenty to hundreds of nu-
cleotides. Each of these molecules ideally should identify one
gene or one exon in the genome. The spots are either printed on
the microarrays by a robot, or synthesized by photolithography
(as in computer chip productions), or by ink-jet printing.

Many unanswered and important questions could potentially
be answered by correctly selecting, assembling, analyzing, and
interpreting microarray data. Clustering is commonly used in
microarray experiments to identify groups of genes that share
similar expressions. Genes that are similarly expressed are of-
ten coregulated and are involved in the same cellular processes.
Therefore, clustering suggests functional relationships between
groups of genes. It may also help in identifying promoter se-
quence elements that are shared among genes. In addition, clus-
tering can be used to analyze the effects of specific changes
in experimental conditions, and may reveal the full cellular re-
sponses triggered by those conditions.

A good solution of the gene ordering problem (i.e., finding
optimal order of DNA microarray data) will have similar genes
grouped together, in clusters. A notion of distance must thus be

defined in order to measure similarity among genes. A simple
measure is the Euclidean distance (other options are possible
using Pearson correlation, absolute correlation, Spearman rank
correlation, etc.). One can thus construct a matrix of intergene
distances. Using this matrix one can calculate the total distance
between adjacent genes and find that permutation of genes for
which the total distance is minimized [similar to what is done
in the TSP using GA (Section II-B)].

Methods: Finding the optimal order of microarray data is
known to be NP complete. Tsai et al. [45] formulated this as the
traveling salesman problem and the applied family competition
GA (FCGA), to solve it. The edge assembly crossover (EAX) is
combined with the family competition concept and neighbor join
mutation (NJ). In [46], a modified EAX and NJ are used in EA
for efficiently optimizing the clustering and ordering of genes,
ranging in size from 147 to 6221. Chromosomes in EAs are
represented as a permutation of genes. The size of the population
is assumed to equal to the number of genes in problems that
involved fewer than 1000 genes, and half of the number of gens
in larger problems. Fitness of chromosomes are evaluated from
(1) and distance matrix is formed using pearson correlation.
Crossover and mutation rates are set to one. Microarray data
analysis is a competitive field, and no decisive measure of the
performance of methods is available, so methods using EAs for
microarray are compared in the TSP framework [46].

Garibay et al. [47] introduced a proportional GA (PGA) that
relies on the existence or nonexistence of genes to determine
the information that is expressed. The information represented
by a PGA individual depends only on what is present in the
individual, and not on the order in which it is present. As a
result, the order of the encoded information is free to evolve in
response to factors other than the value of the solution.

E. Gene Regulatory Network Identification

Inferring a gene regulatory network from gene expression
data obtained by DNA microarray is considered one of the
most challenging problems in the field of bioinfomatics [48].
An important and interesting question in biology, regarding the
variation of gene expression levels, is how genes are regulated.
Since almost all cells in a particular organism have an identical
genome, differences in gene expression, and not the genome
content, are responsible for cell differentiation during the life of
the organism.

For gene regulation, an important role is played by a type
of proteins called transcription factors [10]. The transcription
factors bind to specific parts of the DNA, called transcription
factor binding sites (i.e., specific, relatively short combinations
of A, T, C or G), which are located in promoter regions. Specific
promoters are associated with particular genes and are generally
not too far from the respective genes, although some regulatory
effects can be located as far as 30 000 bases away, which makes
the definition of the promoter difficult.

Transcription factors control gene expression by binding to
the gene’s promoter and either activating (switching on) the
gene or repressing it (switching it off). Transcription factors
are gene products themselves, and therefore, in turn, can be

608 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 36, NO. 5, SEPTEMBER 2006

controlled by other transcription factors. Transcription factors
can control many genes, and some (probably most) genes are
controlled by combinations of transcription factors. Feedback
loops are possible. Therefore, we can talk about gene regulation
networks. Microarrays and computational methods are playing
a major role in attempts to reverse engineer gene networks from
various observations.

Methods: In gene network inference problem the objective
is to predict a regulating network structure of the interacting
genes from the observed data; i.e., expression pattern. The gene
expressions are regulated in discrete state transitions such that
the expression levels of all genes are updated simultaneously.
In [49], each real valued chromosomes (in GAs) represents the
expression level of all the genes. Each gene has a specific ex-
pression level for another gene; so, for N genes there are N2

expression levels. Fitness of the chromosomes are evaluated by
absolute error with generated expression pattern (The sum of all
expressions) from the target expression pattern. A population
size of 2500, 5000, and 7000 are taken for 5, 7, and 10 genes,
respectively. The GA run for 150 generations with a crossover
and mutation rate of 0.99 and 0.01, respectively. Relevant in-
vestigations using GAs are also available in [50]–[53].

F. Construction of Phylogenetic Trees for Studying
Evolutionary Relationship

All species on earth undergo a slow transformation process
called evolution. To explain the evolutionary history of today’s
species and how species relate to one another in terms of com-
mon ancestors, trees are constructed whose leaves represent
the present day species, and interior nodes which represent the
hypothesized ancestors. These kind of labeled binary trees are
called phylogenetic trees [10]. Phylogenetic analysis is used to
study the evolutionary relationship.

Phylogenies are reconstructed based on comparisons between
present-day objects. The term object is used to denote the units
for which one wants to reconstruct the phylogeny. Input data re-
quired for constructing phylogeny are classified into two main
categories [10]. 1) Discrete character, such as beak shape, num-
ber of fingers of presence or absence of a molecular restriction
site. Each character can have a finite number of states. The data
relative to these characters are placed in an objects character
matrix called character state matrix. 2) Comparative numerical
data, called distances between objects. The resulting matrix is
called a distance matrix.

Given data (character state matrix or distance matrix) for n
taxa (objects), the phylogenetic tree reconstruction problem is to
find the particular permutation of taxa that optimize the criteria
(distance). The problem is equivalent to the problem of TSP.
One can simply associate one imaginary city to each taxa, and
define as the distance between two cities the data obtained from
the data matrix for the corresponding pair of taxas.

Methods: Exhaustive search of the space of phylogenetic trees
is generally not possible for more than 11 taxa, and so algorithms
for efficiently searching the space of trees must be developed.
Phylogeny reconstruction is a difficult computational problem,
because the number of possible solutions (permutations) in-

creases with the number of included taxa (objects) [54]. Branch-
and-bound methods can reasonably be applied for up to about 20
taxa, so scientists generally rely on heuristic algorithms, such as
stepwise-addition and star-decomposition methods. However,
such algorithms generally involve a prohibitive amount of com-
putation time for large problems and often find trees that are only
locally optimal. Heuristic search strategies using GAs [54]–[57]
can overcome the aforementioned problems by faster recon-
struction of the optimal trees with less computing power.

In [57], each chromosome in GA is encoded as a permutation
of 15 taxas (the same as TSP); and selection, crossover, and mu-
tation operations are performed to minimize the distance among
the taxas. Here, each taxa is an amino acid sequence taken from
the GenBank, and distance between them is computed as an
alignment score using CLUSTAL W [26]. The GA population
consisted of 20 trial trees. A crossover probability of 0.5 and
mutation probability of 0.2 has been used. Optimal trees are
obtained after 138 generations. The only difference with TSP is
that the end points of the chromosome GA are relevant in phy-
logenetic trees as they represent the starting and the end points
of evolutionary relationship. GAs has also been used [58] for
automatic self-adjustment of the parameters of the optimization
algorithm of phylogenetic trees.

G. DNA Structure Prediction

DNA structure plays an important role in a variety of biolog-
ical processes. Different dinucleotide and trinucleotide scales
have been described to capture various aspects of DNA struc-
ture including base stacking energy, propeller twist angle, pro-
tein deformability, bendability, and position preference [59].
three-dimension DNA structure and its organization into chro-
matin fibres is essential for its functions, and is applied in protein
binding sites, gene regulation, triplet repeat expansion diseases,
etc. DNA structure depends on the exact sequence of nucleotides
and largely on interactions between neighboring base pairs. Dif-
ferent sequences can have different intrinsic structures. Periodic
repetitions of bent DNA in phase with the helical pitch will
cause DNA to assume a macroscopically curved structure. Flex-
ible or intrinsically curved DNA is energetically more favorable
to wrap around histones than rigid and unbent DNA.

The curvature of a space line is defined as the derivative,
dt/dl, of the tangent vector t, along the line l. Its modulus is
the inverse of the curvature radius, and its direction is that of
the main normal to the curve [61]. In the case of DNA, the line
corresponds to the helical axis and the curvature is a vectorial
function of the sequence. The curvature represents the angular
deviation (|C(n)|) between the local helical axes of the nth and
(n + 1)th base pairs (Fig. 4). Under similar external conditions,
the intrinsic curvature function represents the differential
behavior of different DNA tracts and corresponds to the most
stable superstructure. The physical origin of curvature is still a
matter of debate [60]; it is, however, a result of the chemical and,
consequently, stereochemical, inhomogeneity of the sequence,
which gives rise to different macroscopic manifestations. These
manifestations change with the thermodynamic conditions such
as pH, the ionic force, the kind of counterions, and obviously the

PAL et al.: EVOLUTIONARY COMPUTATION IN BIOINFORMATICS: A REVIEW 609

temperature as a result of perturbations on the intrinsic curvature
depending on the sequence-dependent bendability. Therefore,
it is generally useful to characterize a DNA superstructure with
the so-called intrinsic curvature function [60].

Methods: The 3-D spatial structure of a methylene-acetal-
linked thymine dimer present in a 10 basepair (bp) sense–
antisense DNA duplex was studied in [62] with a GA designed to
interpret nuclear Overhauser effect (NOE) inter-proton distance
restraints. Trial solutions (chromosomes in GAs) are encoded
on bit strings which represents torsion angles between atoms.
From these torsion angles, atomic coordinates, needed for the
fitness function are calculated using the DENISE program. The
problem is to find a permutation of torsion angles (eight torsion
angles for each nucleotide in DNA) that minimizes the atomic
distance between protons of neucleotides. The GA minimizes
the difference between distances in the trial structures and dis-
tance restraints for a set of 63 proton–proton distance restraints
defining the methylene-acetal-linked thymine dimer. The tor-
sion angles were encoded by Gray coding and the GA population
consisted of 100 trial structures. Uniform crossover with a prob-
ability of 0.9 and mutation rate of 0.04 was used. It was demon-
strated that the bond angle geometry around the methylene-
acetal linkage plays an important role in the optimization.

A hybrid technique involving artificial neural networks
(ANN) and GA is described in [63] for optimization of DNA
curvature characterized in terms of the reliability (RL) value. In
this approach, first an ANN approximates (models) the nonlin-
ear relationship(s) existing between its input and output example
data sets. Next, the GA searches the input space of the ANN
with a view to optimize the ANN output. Using this method-
ology, a number of sequences possessing high RL values have
been obtained and analyzed to verify the existence of features
known to be responsible for the occurrence of curvature.

H. RNA Structure Prediction

An RNA molecule is considered as a string of n characters
R = r1r2 · · · rn such that riεA,C,G,U . Typically n is in the
hundreds, but could also be in thousands. The secondary struc-
ture of the molecule is a collection S of a set of stems and each
stem consisting of a set of consecutive base pairs (rirj) (e.g.,
GU, GC, AU). Here, 1 ≤ i ≤ j ≤ n and (ri and rj) are con-
nected through hydrogen bonds. If (ri, rj)εS, in principle we
should require that ri be a complement to rj and that j − i > t,
for a certain threshold t (because it is known that an RNA
molecule does not fold too sharply on itself). With such an as-
sumption [10], the total free energy E of a structure S is given
by

E(s) =
∑

(ri ,rj)∈S

α(ri, rj) (3)

where α(ri, rj) gives the free energy of base pair (ri, rj). Gen-
erally, the adopted convention is α(ri, rj) < 0, if i �= j, and
α(ri, rj) = 0, if i = j.

Attempts to predict automatically the RNA secondary struc-
ture can be divided in essentially two general approaches. The
first involves the overall free energy minimization by adding

contributions from each base pair, bulged base, loop, and other
elements [64]. EAs are found to be suitable for this purpose.
Chromosomes in EAs are encoded to represent the RNA struc-
ture and fitness of each chromosome is evaluated in terms of free
energy (3). The second type of approach [65] is more empirical
and it involves searching for the combination of nonexclusive
helices with a maximum number of base pairings, satisfying the
condition of a tree like structure for the bio-molecule. Within
the latter, methods using dynamic programming (DP) are the
most common [65], [66]. While DP can accurately compute
the minimum energy within a given thermodynamic model, the
natural fold of RNA is often in a suboptimal energy state and
requires soft computing EAs rather than hard computing DP.

RNA may enter intermediate conformational states that are
key to its functionality. These states may have a significant im-
pact on gene expression. The biologically functional states of
RNA molecules may not correspond to their minimum energy
state, and kinetic barriers may exist that trap the molecule in a
local minimum. In addition, folding often occurs during tran-
scription, and cases exist in which a molecule will undergo
transitions between one or more functional conformations be-
fore reaching its native state. Thus, methods for simulating the
folding pathway of an RNA molecule and locating significant
intermediate states are important for the prediction of RNA
structure and its associated function.

Methods: The possibilities of using GAs for the prediction of
RNA secondary structure were investigated in [67] and [68]. The
implementations used a binary representation for the solutions
(chromosomes in GAs). The algorithm, using the procedure of
stepwise selection of the most fit structures (similarly to natural
evolution), allows different models of fitness for determining
RNA structures. The analysis of free energies for intermediate
foldings suggests that in some RNAs, the selective evolutionary
pressure suppresses the possibilities for alternative structures
that could form in the course of transcription. The algorithm
had inherent incompatibilities of stems due to the binary repre-
sentation of the solutions.

Wiese et al. [69] used GAs to predict the secondary structure
of RNA molecules, where the secondary structure is encoded as
a permutation similar to path representation in TSP (each helix
is associated to one imaginary city) to overcome the inherent
incompatibilities of binary representation for RNA molecule
structure prediction. They showed that the problem can be
decomposed into a combinatorial problem of finding the subset
of helices from a set of feasible helices leading to a minimum
energy [using (3)] in the molecule. More specifically, the algo-
rithm predicts the specific canonical base pairs that will form
hydrogen bonds and build helices. Different combinations of
crossover and mutation probabilities ranging from 0.0 to 1.0 in
increments of 0.01 and 0.1 were tested for 400 generations with
a population size of 700 (maximum). Results on RNA sequences
of lengths 76, 210, 681, and 785 nucleotides were provided.
It was shown that the keep-best reproduction operator has
similar benefits as in the traveling salesman problem domain. A
comparison of several crossover operators was also provided.

A massively parallel GA for the RNA folding problem has
been used in [70]–[72]. The authors demonstrated that the

610 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 36, NO. 5, SEPTEMBER 2006

Fig. 4. Representation of the DNA curvature in terms of angular deviation
between the local helical axes of the turn centered on the nth and (n + 1)th
basepairs [60].

GA with an improved mutation operator predicts more correct
(true-positive) stems and more correct base pairs than could
have been a predicted with DP algorithm.

I. Protein Structure Prediction and Classification

Identical protein sequences result in identical 3-D structures.
So it follows that similar sequences may result in similar struc-
tures, and this is usually the case. The converse, however, is not
true: identical 3-D structures do not necessarily indicate iden-
tical sequences. It is because of this that there is a distinction
between “homology” and “similarity.” There are examples of
proteins in the databases that have nearly identical 3-D struc-
tures, and are therefore homologous, but do not exhibit signif-
icant (or detectable) sequence similarity. Pairwise comparisons
do not readily show positions that are conserved among a whole
set of sequences and tend to miss subtle similarities that become
visible when observed simultaneously among many sequences.
Thus, one wants to simultaneously compare several sequences.

Structural genomics is the prediction of the 3-D structure of
a protein from the primary amino acid sequence [73]. This is
one of the most challenging tasks in bioinformatics. The five
levels of protein structure are described below. Three of them
are illustrated in Fig. 5.

1) Primary structure is the sequence of amino acids that com-
pose the protein.

2) The secondary structure of a protein is the spatial arrange-
ment of the atoms constituting the main protein backbone.
Linus Pauling was the first to develop a hypothesis for
different potential protein secondary structures. He devel-
oped the α-helix structure and later the β-sheet structure
for different proteins. An α-helix is a spiral arrangement
of the protein backbone in the form of a helix with hydro-
gen bonding between side-chains. The β-sheets consist of
parallel or antiparallel strands of amino acids linked to
adjacent strands by hydrogen bonding. Collagen is an ex-
ample of a protein with β-sheets serving as its secondary
structure.

3) The super-secondary structure (or motif) is the local fold-
ing pattern built up from particular secondary structures.
For example, the EF-hand motif consists of an α-helix,
followed by a turn, followed by another α-helix.

4) Tertiary structure is formed by packing secondary struc-
tural elements linked by loops and turns into one or several

Fig. 5. Three levels of protein structure.

compact globular units called domains; i.e., the folding of
the entire protein chain.

5) A final protein may contain several protein subunits ar-
ranged in a quaternary structure.

Protein sequences almost always fold into the same structure
in the same environment. Hydrophobic interaction, hydrogen
bonding, electrostatic, and other Van der Waals-type interactions
also contribute to determine the structure of the protein. Many
efforts are underway to predict the structure of a protein, given
its primary sequence. A typical computation of protein folding
would require computing all the spatial coordinates of atoms in a
protein molecule, starting with an initial configuration and work-
ing up to a final minimum-energy folding configuration [10]. Se-
quence similarity methods can predict the secondary and tertiary
structures based on homology to known proteins. Secondary
structure predictions methods include Chou–Fasman [73], neu-
ral network [74], [75], nearest neighbor methods [76], [77], and
Garnier–Osguthorpe–Robson [78]. Tertiary structure prediction
methods are based on energy minimization, molecular dynam-
ics, and stochastic searches EAs of conformational space.

Proteins clustered together into families are clearly evolution-
arily related. Generally, this means that pairwise residue identi-
ties between the proteins are 30% and greater. Proteins that have
low sequence identities, but whose structural and functional fea-
tures suggest that a common evolutionary origin is probable, are
placed together in superfamilies.

Methods: The work of Unger et al. [79]–[81] is one of the ear-
lier investigations that discussed the reduced 3-D lattice protein
folding problem for determining tertiary structure of protein in
a GA framework. In this model, the energy function of protein
chains is optimized. The encoding proposed by Unger et al. is a
direct encoding of the direction of each peptide from the preced-
ing peptide (five degrees of freedom, disallowing back move).
Peptides are represented as single point units without side
chains. Each peptide is represented by three bits to encode five
degrees of freedom. The evaluation function solely evaluates
nonsequential hydrophobe to hydrophobe contacts and is stated
as a negative value (−1 per contact) with larger negative values
indicating better energy conformations (thus stating the problem
in terms of minimization). The algorithm begins with a popu-
lation of identical unfolded configurations. Each generation be-
gins with a series of K mutations being applied to each individual
in the population, where K is equal to the length of the encoding.
These mutations are filtered using a Monte Carlo acceptance al-
gorithm which disallows lethal configurations (those with back
move), always accepts mutations resulting in better energy, and
accepts increased energy mutations based upon a threshold on
the energy gain which becomes stricter over time. One-point

PAL et al.: EVOLUTIONARY COMPUTATION IN BIOINFORMATICS: A REVIEW 611

crossover with an additional random mutation at the crossover
point follows, producing a single offspring for each selected pair
of parents; however, lethal configurations are rejected. In this
situation, the crossover operation is retried for a given pair of
parents until a nonlethal offspring can be located. Offspring are
accepted using a second Monte Carlo filter which accepts all
reduced energy confirmations and randomly accepts increased
energy offspring again using a cooling threshold on the energy
gain. The algorithm uses 100% replacement of all individuals
in a generation through crossover except the single best, elitist,
individual. Test data consisted of a series of ten randomly pro-
duced 27 length sequences and ten randomly produced 64 length
sequences. The algorithm operated on each of the 27 and 64
length sequence for roughly 1.2 million and 2.2 million function
evaluations, respectively, using a population size of 200. Per-
formance comparisons were given between the above algorithm
and a pure Monte Carlo approach which greatly favored the for-
mer. While the encoding and evaluation function proposed by
Unger and Moult are fairly straightforward, the algorithm differs
from a standard GA approach in several aspects. Most notable
are the nonrandom initialization, the high level of mutation, and
the Monte Carlo filtering of both the mutation and crossover re-
sults, which resembles typical simulated annealing approaches.

Patton et al. [82] determined tertiary structures of proteins
based on the concept of Unger et al. [36], [40]. They enlarged
the representation from three to seven bits per peptide in order
to encode one of the 120 permutations of the five allowable
directions for each. It was shown that the GA indeed appears to
be effective for determining the tertiary structure with far fewer
computational steps than that reported by Unger et al.

Natalio et al. [83], [84] investigated the impact of several al-
gorithmic factors for a simple protein structure prediction prob-
lem: the conformational representation, the energy formulation,
and the way in which infeasible conformations are penalized.
Their analysis leads to specific recommendations for both GAs
and other heuristic methods for solving PSP on the HP model.
A detailed comparison between the work of Unger et al. and
Patton et al. and an algorithm using GAs to overcome their
limitations has also been presented [84].

A hill-climbing GA for simulation of protein folding has been
described in [85]. The program builds a set of Cartesian points
to represent an unfolded polypeptide’s backbone. The dihedral
angles determining the chain’s configuration are stored in an
array of chromosome structures that is copied and then mutated.
The fitness of the mutated chain’s configuration is determined by
its radius of gyration. A four-helix bundle was used to optimize
the simulation conditions. The program ran 50% faster than the
other GA programs, and tests on 100 nonredundant structures
produced results comparable to that of other GAs.

In [86], features are extracted from protein sequences using
a position specific weight matrix. Thereafter, a genetic algo-
rithm based fuzzy clustering scheme [87] is used for generating
prototypes of the different superfamilies. Finally, superfamily
classification of new sequences is performed by using the near-
est neighbor rule.

Other investigations on protein structure prediction are avail-
able in [88]–[100]. An overview and state-of-the-art of the appli-

cations of EAs only for the protein folding problem is described
in [101], whereas the relevance of GAs in several bioinformatics
tasks is discussed in the present article.

J. Molecular Design and Molecular Docking

When two molecules are in close proximity, it can be energet-
ically favorable for them to bind together tightly. The molecular
docking problem is the prediction of energy and physical config-
uration of binding between two molecules. A typical application
is in drug design, in which one might dock a small molecule
that is a described drug to an enzyme one wishes to target. For
example, HIV protease is an enzyme in the AIDS virus that is
essential to its replication. The chemical action of the protease
takes place at a localized active site on its surface. HIV protease
inhibitor drugs are small molecules that bind to the active site
in HIV protease and stay there, so that the normal functioning
of the enzyme is prevented. Docking software allows us to eval-
uate a drug design by predicting whether it will be successful
in binding tightly to the active site in the enzyme. Based on
the success of docking, and the resulting docked configuration,
designers can refine the drug molecule [102].

Molecular design and docking is a difficult optimization prob-
lem, requiring efficient sampling across the entire range of posi-
tional, orientational, and conformational possibilities [103]. The
major problem in molecular binding is that the search space is
very large and the computational cost increases tremendously
with the growth of the degrees of freedom. A docking algorithm
must deal with two distinct issues: a sampling of the conforma-
tional degrees of freedom of molecules involved in the complex,
and an objective function (OF) to assess its quality.

For molecular design, the structure of a flexible molecule
is encoded by an integer-valued or real-valued chromosome in
GA, the ith element of which contains the torsion angle for the
ith rotable bond. The energy for the specified structure (confor-
mation) can be calculated using standard molecular modeling
package, and this energy is used as the fitness function for the
GA. GAs try to identify a set of torsion angle values that min-
imize the calculated energy. GA is becoming a popular choice
for the heuristic search method in molecular design and docking
applications [104]. Both canonical GAs and evolutionary pro-
gramming methods are found to be successful in drug design
and docking. Some of them are described below.

Methods: A novel and robust automated docking method that
predicts the bound conformations (structures) of flexible lig-
ands to macromolecular targets has been developed [105]. The
method combines GAs with a scoring function that estimates
the free energy change upon binding. This method applies a
Lamarckian model of genetics, in which environmental adapta-
tions of an individual’s phenotype are reverse transcribed into its
genotype and become inheritable traits. Three search methods,
viz., Monte Carlo simulated annealing, a traditional GA, and
the Lamarckian GA were considered, and their performance
was compared in dockings of seven protein-ligand test systems
having known three-dimensional structure. The chromosome is
composed of a string of realvalued genes: three Cartesian co-
ordinates for the ligand translation; four variables defining a

612 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 36, NO. 5, SEPTEMBER 2006

quaternion specifying the ligand orientation; and one real-value
for each ligand torsion, in that order. The order of the genes that
encode the torsion angles is defined by the torsion tree created
by AUTOTORS (a preparatory program used to select rotatable
bonds in the ligand). Thus, there is a one-to-one mapping from
the ligand’s state variables to the genes of the individuals chro-
mosome. An Individual’s fitness is the sum of the intermolecular
interaction energy between the ligand and the protein, and the
intramolecular interaction energy of the ligand. In the GA and
LGA dockings, an initial population of 50 random individuals, a
maximum number of 1.5 × 106 energy evaluations, a maximum
number of 27 000 generations, a mutation rate of 0.02, and a
crossover rate of 0.80 have been used. Proportional selection
was used, where the average of the worst energy results was
calculated over a window of the previous 10 generations.

Bagchi et al. [106], [107] presented an evolutionary approach
for designing a ligand molecule that can bind to the active site
of a target protein. A two-dimensional (2-D) model was consid-
ered. A variable string length genetic algorithm (VGA) was used
for evolving an appropriate arrangement of the basic functional
units of the molecule to be designed. The method is superior to
fixed string length GA for designing a ligand molecule to target
the human rhinovirus strain 14 (causative agent for AIDS).

Chen et al. [108] derived a population based annealing genetic
algorithm (PAG) using GAs and simulated annealing (SA). They
applied it to find binding structures for three drug protein molec-
ular pairs, including the anti-cancer drug methotrexate (MTX).
All of the binding results keep the energy at low levels, and have
a promising binding geometrical structure in terms of number
of hydrogen bonds formed. One of the design methods of PAG,
which incorporates an annealing scheme with the normal prob-
ability density function as the neighbor generation method, was
described in [109]. The algorithm was used for computer-aided
drug design. Using a dihydrofolate reductase enzyme with the
anti-cancer drug methotrexate and two analogs of the antibac-
terial drug trimethoprim, PAGs can find a drug structure within
several hours. A similar work is available in [110].

Christopher et al. [111] evaluated the use of GAs with local
search in molecular docking. They investigated several GA-local
search hybrids and compared results with those obtained from
simulated annealing in terms of optimization success, and abso-
lute success in finding the true physical docked configuration.

Other relevant investigations are available in [104],
[112]–[120]. A survey on the application of GAs for molecular
modeling, docking of flexible ligands into protein active sites,
and for de novo ligand design is described in [121]. Advantages
and limitations of GAs are mentioned for the aforementioned
tasks. In contrast, the present article provides a broader overview
and state-of-the-art of the applications of EAs for several bioin-
formatics tasks.

IV. CONCLUSION

The increasing availability of annotated genomic sequences
has resulted in the introduction of computational genomics and
proteomics, large-scale analysis of complete genomes, and the
proteins that they encode for relating specific genes to diseases.

The rationale for applying computational approaches to facil-
itate the understanding of various biological processes mainly
includes the following:

1) to provide a more global perspective in experimental de-
sign;

2) to capitalize on the emerging technology of database-
mining: the process by which testable hypotheses are
generated regarding the function or structure of a gene
or protein of interest by identifying similar sequences in
better characterized organisms.

GAs appear to be a very powerful artificial intelligence paradigm
to handle these issues. This article provides an overview of
different bioinformatics tasks and the relevance of GAs to handle
them efficiently.

Even though the current approaches in biocomputing using
EAs are very helpful in identifying patterns and functions of
proteins and genes, the output results are still far from perfect.
There are three general characteristics that might appear to limit
the effectiveness of GAs. First, the basic selection, crossover,
and mutation operators are common to all applications. There-
fore, research is now focussed on designing problem specific
operators to get better results. Second, a GA requires extensive
experimentation for the specification of several parameters so
that appropriate values can be identified. Third, GAs involve a
large degree of randomness and different runs may produce dif-
ferent results, so it is necessary to incorporate problem specific
domain knowledge into GA to reduce randomness and com-
putational time and current research is going on in this direc-
tion also. The methods are not only time-consuming, requiring
UNIX workstations to run on, but might also lead to false in-
terpretations and assumptions due to necessary simplifications.
It is therefore still mandatory to use biological reasoning and
common sense in evaluating the results delivered by a biocom-
puting program. Also, for evaluation of the trustworthiness of
the output of a program, it is necessary to understand its mathe-
matical/theoretical background to finally come up with a useful
and sense-full analysis.

Other potential bioinformatics tasks for which EA can be
used include the following:

1) characterization of protein content and metabolic path-
ways between different genomes;

2) identification of interacting proteins;
3) assignment and prediction of gene products;
4) large-scale analysis of gene expression levels;
5) mapping expression data to sequence, structural and bio-

chemical data.

REFERENCES

[1] P. Baldi and S. Brunak, Bioinformatics: The Machine Learning Approach.
Cambridge, MA: MIT Press, 1998.

[2] R. B. Altman, A. Valencia, S. Miyano, and S. Ranganathan, “Challenges
for intelligent systems in biology,” IEEE Intell. Syst., vol. 16, no. 6,
pp. 14–20, Nov./Dec. 2001.

[3] D. Goldberg, Genetic Algorithms in Optimization, Search, and Machine
Learning. Reading, MA: Addison-Wesley, 1989.

[4] D. Bhandari, C. A. Murthy, and S. K. Pal, “Genetic algorithm with elitist
model and its convergence,” Int. J. Pattern Rcognit. Artif. Intell., vol. 10,
no. 6, pp. 731–747, 1996.

PAL et al.: EVOLUTIONARY COMPUTATION IN BIOINFORMATICS: A REVIEW 613

[5] L. B. Booker, D. E. Goldberg, and J. H. Holland, “Classifier systems and
genetic algorithms,” Artif. Intell., vol. 40, no. 1–3, pp. 235–282, 1989.

[6] M. Mitchell, S. Forrest, and J. H. Holland, “The royal road for genetic
algorithms: Fitness landscapes and GA performance,” in Proc. 1st Eur.
Conf. Artificial Life, 1992.

[7] D. E. Goldberg and J. H. Holland, “Genetic algorithms and machine
learning,” Mach. Learn., vol. 3, pp. 95–100, 1988.

[8] J. H. Holland, Adaptation in Natural and Artificial Systems. Cambridge,
MA: MIT Press, 1992.

[9] L. Davis, Handbook of Genetic Algorithm. New York: Van Nostrand
Reinhold, 1991.

[10] J. Setubal and J. Meidanis, Introduction to Computational Molecular Bi-
ology. Boston, MA: Thomson, 1999.

[11] A. S. Wu and R. K. Lindsay, “A survey of intron research in genetics,”
in Proc. 4th Conf. Parallel Problem Solving from Nature, pp. 101–110,
1996.

[12] J. Chen, E. Antipov, B. Lemieux, W. Cedeno, and D. H. Wood, “DNA com-
puting implementing genetic algorithms,” in Evolution as Computation,
New York: Springer-Verlag, pp. 39-49, 1999.

[13] R. J. Parsons, S. Forrest, and C. Burks, “Genetic algorithms, operators,
and DNA fragment assembly,” Mach. Learn., vol. 21, no. 1–2, pp. 11–33,
1995.

[14] , “Genetic algorithms for DNA sequence assembly,” in Proc. 1st Int.
Conf. Intelligent Systems in Molecular Biology, pp. 310–318, 1993.

[15] R. J. Parsons and M. E. Johnson, “DNA fragment assembly and genetic
algorithms. New results and puzzling insights,” in Int. Conf. Intelligent
Systems in Molecular Biology, 1995, pp. 277–284.

[16] S. B. Needleman and C. D. Wunsch, “A general method applicable to the
search for similarities in the amino acid sequence of two proteins,” J. Mol.
Biol., vol. 48, pp. 443–453, 1970.

[17] T. F. Smith and M. S. Waterman, “Identification of common molecular
sequences,” J. Mol. Biol., vol. 147, pp. 195–197, 1981.

[18] E. Aart and V. P. Laarhoven, Simulated Annealing: A Review of Theory
and Applications. Norwell, MA: Kluwer, 1987.

[19] C. Lawrence, S. Altschul, M. Boguski, J. Liu, A. Neuwald, and J. Woot-
ton, “Detecting subtle sequence signals: A Gibbs sampling strategy for
multiple alignment,” Science, vol. 262, pp. 208–214, 1993.

[20] C. Notredame and D. G. Higgins, “SAGA: Sequence alignment by genetic
algorithm,” Nucleic Acids Res., vol. 24, no. 8, pp. 1515–1524, 1996.

[21] C. Zhang and A. K. C. Wong, “A genetic algorithm for multiple molecular
sequence alignment,” Bioinformatics, vol. 13, pp. 565–581, 1997.

[22] L. Davis, “Adapting operator probabilities in genetic algorithms,” in Proc.
3rd Int. Conf. Genetic Algorithms, J. D. Schaffer, Ed., 1989, pp. 61–69.

[23] T. Yokoyama, T. Watanabe, A. Taneda, and T. Shimizu, “A web server
for multiple sequence alignment using genetic algorithm,” Genome Inf.,
vol. 12, pp. 382–383, 2001.

[24] O. O’Sullivan, K. Suhre, C. Abergel, D. G. Higgins, and C. Notredame,
“3DCoffee: Combining protein sequences and structures within multiple
sequence alignments,” J. Mol. Biol., vol. 340, no. 2, pp. 385–395, 2004.

[25] C. Notredame, E. A. O’Brien, and D. G. Higgins, “RAGA: RNA sequence
alignment by genetic algorithm,” Nucleic Acids Res., vol. 25, no. 22,
pp. 4570–4580, 1997.

[26] J. D. Thompson, D. G. Higgins, and T. J. Gibson, “CLUSTAL
W: Improving the sensitivity of progressive multiple sequence align-
ment through sequence weighting, position-specific gap penalties and
weight matrix choice,” Nucleic Acids Res., vol. 22, pp. 4673–4680,
1994.

[27] C. Zhang and A. K. C. Wong, “A technique of genetic algorithm and
sequence synthesis for multiple molecular sequence alignment,” in Proc.
IEEE Int. Conf. Syst. Man, and Cybernetics, vol. 3, 1998, pp. 2442–2447.

[28] , “Toward efficient multiple molecular sequence alignment: A system
of genetic algorithm and dynamic programming,” IEEE Trans. Syst. Man,
Cybern. B, vol. 27, no. 6, pp. 918–932, Dec. 1997.

[29] T. Murata and H. Ishibuchi, “Positive and negative combination effects of
crossover and mutation operators in sequencing problems,” Evol. Comput.,
vol. 20–22, pp. 170–175, 1996.

[30] C. Zhang, “A genetic algorithm for molecular sequence comparison,”
in Proc. IEEE Int. Conf. Systems, Man, and Cybernetics, vol. 2, 1994,
pp. 1926–1931.

[31] J. D. Szustakowski and Z. Weng, “Protein structure alignment using a
genetic algorithm,” Proteins, vol. 38, no. 4, pp. 428–440, 2000.

[32] K. Hanada, T. Yokoyama, and T. Shimizu, “Multiple sequence alignment
by genetic algorithm,” Genome Inf., vol. 11, pp. 317–318, 2000.

[33] L. A. Anbarasu, P. Narayanasamy, and V. Sundararajan, “Multiple molec-
ular sequence alignment by island parallel genetic algorithm,” Current
Sci., vol. 78, no. 7, pp. 858–863, 2000.

[34] H. D. Nguyen, I. Yoshihara, K. Yamamori, and M. Yasunaga, “A parallel
hybrid genetic algorithm for multiple protein sequence alignment,” in
Proc. Congress Evolutionary Computation, vol. 1, 2002, pp. 309–314.

[35] C. Gaspin and T. Schiex, “Genetic algorithms for genetic mapping,” in
Proc. 3rd Eur. Conf. Artificial Evolution, 1997, pp. 145–156.

[36] J. Gunnels, P. Cull, and J. L. Holloway, “Genetic algorithms and simu-
lated annealing for gene mapping,” in Proc. 1st IEEE Conf. Evolutionary
Computation, 1994, pp. 385–390.

[37] H. Murao, H. Tamaki, and S. Kitamura, “A coevolutionary approach
to adapt the genotype-phenotype map in genetic algorithms,” in Proc.
Congress Evolutionary Computation, vol. 2, 2002, pp. 1612–1617.

[38] J. Fickett and M. Cinkosky, “A genetic algorithm for assembling chromo-
some physical maps,” in Proc. 2nd Int. Conf. Bioinformatics, Supercom-
puting, and Complex Genome Analysis, 1993, pp. 272–285.

[39] J. W. Fickett, “Finding genes by computer: The state of the art,” Trends
Genetics, vol. 12, no. 8, pp. 316–320, 1996.

[40] A. Kel, A. Ptitsyn, V. Babenko, S. Meier-Ewert, and H. Lehrach, “A ge-
netic algorithm for designing gene family-specific oligonucleotide sets
used for hybridization: The G protein-coupled receptor protein superfam-
ily,” Bioinformatics, vol. 14, no. 3, pp. 259–270, 1998.

[41] V. G. Levitsky and A. V. Katokhin, “Recognition of eukaryotic promoters
using a genetic algorithm based on iterative discriminant analysis,” In
Silico Biol., vol. 3, no. 1–2, pp. 81–87, 2003.

[42] S. Knudsen, “Promoter2.0: For the recognition of PolII promoter se-
quences,” Bioinformatics, vol. 15, pp. 356–361, 1999.

[43] N. M. Luscombe, D. Greenbaum, and M. Gerstein, “What is bioinformat-
ics? A proposed definition and overview of the field,” in Yearbook Medical
Informatics: Edmonton, AB, Canada: IMIA, 2001, pp. 83–100.

[44] J. Quackenbush, “Computational analysis of microarray data,” Nat. Rev.
Genetics, vol. 2, pp. 418–427, 2001.

[45] H. K. Tsai, J. M. Yang, and C. Y. Kao, “Applying genetic algorithms
to finding the optimal order in displaying the microarray data,” in Proc.
GECCO, 2002, pp. 610–617.

[46] H. K. Tsai, J. M. Yang, Y. F. Tsai, and C. Y. Kao, “An evolutionary
approach for gene expression patterns,” IEEE Trans. Inf. Technol. Biomed.,
vol. 8, no. 2, pp. 69–78, Jun. 2004.

[47] A. S. Wu and I. Garibay, “The proportional genetic algorithm: Gene
expression in a genetic algorithm,” Genetic Programm. Evol. Hardware,
vol. 3, no. 2, pp. 157–192, 2002.

[48] T. Akutsu, S. Miyano, and S. Kuhara, “Identification of genetic networks
from a small number of gene expression patterns under the boolean net-
work model,” in Proc. Pacific Symp. Biocomputing, vol. 99, 1999, pp. 17–
28.

[49] S. Ando and H. Iba, “Inference of gene regulatory model by genetic
algorithms,” in Proc. Congress Evolutionary Computation, vol. 1, 2001,
pp. 712–719.

[50] N. Behera and V. Nanjundiah, “Trans gene regulation in adaptive evolu-
tion: A genetic algorithm model,” J. Theore. Biol., vol. 188, pp. 153–162,
1997.

[51] S. Ando and H. Iba, “Quantitative modeling of gene regulatory network-
identifying the network by means of genetic algorithms,” presented at the
11th Genome Informatics Workshop, 2000.

[52] , “The matrix modeling of gene regulatory networks-reverse en-
gineering by genetic algorithms-,” in presented at the Atlantic Symp.
Computational Biology and Genome Information Systems and Technol-
ogy, 2001.

[53] D. Tominaga, M. Okamoto, Y. Maki, S. Watanabe, and Y. Eguchi, “Non-
linear numerical optimization technique based on a genetic algorithm for
inverse problems: Towards the inference of genetic networks,” Comput.
Science and Biology (Proc. German Conf. Bioinformatics), 1999, pp. 127–
140.

[54] P. O. Lewis, “A genetic algorithm for maximum likelihood phylogeny
inference using nucleotide sequence data,” Mol. Biol. Evol., vol. 15, no. 3,
pp. 277–283, 1998.

[55] A. R. Lemmon and M. C. Milinkovitch, “The metapopulation genetic
algorithm: An efficient solution for the problem of large phylogeny esti-
mation,” Proc. Nat. Acad. Sci., vol. 99, no. 16, pp. 10516–10521, 2002.

[56] K. Katoh, K. Kuma, and T. Miyata, “Genetic algorithm-based maximum-
likelihood analysis for molecular phylogeny,” J. Mol. Evol., vol. 53, no. 4-
5, pp. 477–484, 2001.

[57] H. Matsuda, “Protein phylogenetic inference using maximum likelihood
with a genetic algorithm,” Pacific Symp. Biocomputing, 1996, pp. 512–
523.

[58] A. Skourikhine, “Phylogenetic tree reconstruction using self-adaptive ge-
netic algorithm,” in IEEE Int. Symp. Bio-Informatics and Biomedical
Engineering, 2000, pp. 129–134.

614 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 36, NO. 5, SEPTEMBER 2006

[59] P. Baldi and P. F. Baisnee, “Sequence analysis by additive scales: DNA
structure for sequences and repeats of all lengths,” Bioinformatics, vol. 16,
pp. 865–889, 2000.

[60] C. Anselmi, G. Bocchinfuso, P. De Santis, M. Savino, and A. Scipioni,
“A theoretical model for the prediction of sequence-dependent nucleo-
some thermodynamic stability,” J. Biophys., vol. 79, no. 2, pp. 601–613,
2000.

[61] L. D. Landau and E. M. Lifshitz, Theory of Elasticity. New York:
Pergamon, 1970.

[62] M. L. Beckers, L. M. Buydens, J. A. Pikkemaat, and C. Altona, “Applica-
tion of a genetic algorithm in the conformational analysis of methylene-
acetal-linked thymine dimers in DNA: Comparison with distance ge-
ometry calculations,” J. Biomol. NMR, vol. 9, no. 1, pp. 25–34,
1997.

[63] R. V. Parbhane, S. Unniraman, S. S. Tambe, V. Nagaraja, and B. D. Kulka-
rni, “Optimum DNA curvature using a hybrid approach involving an ar-
tificial neural network and genetic algorithm,” J. Biomol. Struct. Dyn.,
vol. 17, no. 4, pp. 665–672, 2000.

[64] J. P. Adrahams and M. Breg, “Prediction of RNA secondary structure
including pseudoknotting by computer simulation,” Nucleic Acids Res.,
vol. 18, pp. 3035–3044, 1990.

[65] M. Waterman, “RNA structure prediction,” in Methods in Enzymology.
San Diego, CA: Academic, vol. 164, 1988.

[66] M. Zuker and P. Stiegler, “Optimal computer folding of large RNA se-
quences using thermo-dynamics and auxiliary information,” Nucleic Acids
Res., vol. 9, pp. 133–148, 1981.

[67] V. Batenburg, A. P. Gultyaev, and C. W. A. Pleij, “An APL-programmed
genetic algorithm for the prediction of RNA secondary structure,” J. The-
oret. Biol., vol. 174, no. 3, pp. 269–280, 1995.

[68] A. P. Gultyaev, V. Batenburg, and C. W. A. Pleij, “The computer simulation
of RNA folding pathways using an genetic algorithm,” J. Mol. Biol.,
vol. 250, pp. 37–51, 1995.

[69] K. C. Wiese and E. Glen, “A permutation-based genetic algorithm for
the RNA folding problem: A critical look at selection strategies, crossover
operators, and representation issues,” Biosystems, vol. 72, no. 1–2, pp. 29–
41, 2003.

[70] B. A. Shapiro and J. Navetta, “A massively parallel genetic algorithm for
RNA secondary structure prediction,” J. Supercomput., vol. 8, pp. 195–
207, 1994.

[71] B. A. Shapiro and J. C. Wu, “An annealing mutation operator in the genetic
algorithms for RNA folding,” Comput. Appl. Biosci., vol. 12, pp. 171–180,
1996.

[72] B. A. Shapiro, J. C. Wu, D. Bengali, and M. J. Potts, “The massively
parallel genetic algorithm for RNA folding: MIMD implementation and
population variation,” Bioinformatics, vol. 17, no. 2, pp. 137–148,
2001.

[73] P. Chou and G. Fasmann, “Prediction of the secondary structure of proteins
from their amino acid sequence,” Adv. Enzymol., vol. 47, pp. 145–148,
1978.

[74] S. K. Riis and A. Krogh, “Improving prediction of protein secondary struc-
ture using structured neural networks and multiple sequence alignments,”
J. Comput. Biol., vol. 3, pp. 163–183, 1996.

[75] N. Qian and T. J. Sejnowski, “Predicting the secondary structure of glob-
ular proteins using neural network models,” J. Mol. Biol., vol. 202, no. 4,
pp. 865–884, 1988.

[76] A. Salamov and V. Solovyev, “Prediction of protein secondary structure
by combining nearest-neighbor algorithms and multiple sequence align-
ments,” J. Mol. Biol., vol. 247, pp. 11–15, 1995.

[77] S. Salzberg and S. Cost, “Predicting protein secondary structure with a
nearest-neighbor algorithm,” J. Mol. Biol., vol. 227, pp. 371–374, 1992.

[78] J. Garnier, J. F. Gibrat, and B. Robson, “GOR method for predicting
protein secondary structure from amino acid sequence,” in Methods in
Enzymology, vol. 266, 1996, pp. 540–553.

[79] R. Unger and J. Moult, “On the applicability of genetic algorithms to
protein folding,” in Proc. Hawaii Int. Conf. System Sciences, vol. 1, 1993,
pp. 715–725.

[80] , “Genetic algorithms for protein folding simulations,” J. Mol. Biol.,
vol. 231, no. 1, pp. 75–81, 1993.

[81] , “A genetic algorithms for three dimensional protein folding simu-
lations,” in Int. Conf. Genetic Algorithms, 1993, pp. 581–588.

[82] A. Patton, W. P., III, and E. Goldman, “A standard GA approach to native
protein conformation prediction,” in Proc. Int. Conf. Genetic Algorithms,
1995, pp. 574–581.

[83] N. Krasnogor, W. E. Hart, J. Smith, and D. A. Pelta, “Protein structure pre-
diction with evolutionary algorithms,” in Proc. Genetic and Evolutionary
Computation, vol. 2, 1999, pp. 1596–1601.

[84] N. Krasnogor, D. Pelta, P. M. Lopez, P. Mocciola, and E. Canal, “Genetic
algorithms for the protein folding problem: A critical view,” in Proc.
Engineering Intelligent Systems, 1998

[85] L. Cooper, D. Corne, and M. Crabbe, “Use of a novel hill-climbing genetic
algorithm in protein folding simulations,” Comput. Biol. Chem., vol. 27,
no. 6, pp. 575–580, 2003.

[86] S. Bandyopadhyay, “An efficient technique for superfamily classification
of amino acid sequences: Feature extraction, fuzzy clustering and proto-
type selection,” Fuzzy Sets Syst., vol. 152, pp. 5–16, 2005.

[87] U. Maulik and S. Bandyopadhyay, “Fuzzy partitioning using real coded
variable length genetic algorithm for pixel cassification,” IEEE Trans.
Geosci. Remote Sens., vol. 41, no. 5, pp. 1075–1081, May 2003.

[88] H. Iijima and Y. Naito, “Incremental prediction of the side-chain confor-
mation of proteins by a genetic algorithm,” in Proc. IEEE Conf. Evolu-
tionary Computation, vol. 1, 1994, pp. 362–367.

[89] I. Ono, H. Fujiki, M. Ootsuka, N. Nakashima, N. Ono, and S. Tate, “Global
optimization of protein 3-dimensional structures in NMR by a genetic
algorithm,” in Proc. Congress Evolutionary Computation, vol. 1, 2002,
pp. 303–308.

[90] B. Contreras-Moreira, P. W. Fitzjohn, M. Offman, G. R. Smith, and P.
A. Bates, “Novel use of a genetic algorithm for protein structure prediction:
Searching template and sequence alignment space,” Proteins, vol. 53,
no. 6, pp. 424–429, 2003.

[91] P. Saxena, I. Whang, Y. Voziyanov, C. Harkey, P. Argos, M. Jayaram, and
T. Dandekar, “Probing Flp: A new approach to analyze the structure of
a DNA recognizing protein by combining the genetic algorithm, muta-
genesis and non-canonical DNA target sites,” Biochem. Biophys. Acta.,
vol. 1340, no. 2, pp. 187–204, 1997.

[92] J. T. Pedersen and J. Moult, “Protein folding simulations with genetic
algorithms and a detailed molecular description,” J. Mol. Biol., vol. 269,
no. 2, pp. 240–259, 1997.

[93] M. Khimasia and P. Coveney, “Protein structure prediction as a hard opti-
mization problem: The genetic algorithm approach,” Mol. Simul., vol. 19,
pp. 205–226, 1997.

[94] R. Konig and T. Dandekar, “Improving genetic algorithms for protein
folding simulations by systematic crossover,” BioSystems, vol. 50, pp. 17–
25, 1999.

[95] C. A. Del Carpio, “A parallel genetic algorithm for polypeptide three
dimensional structure prediction: A transputer implementation,” J. Chem.
Inf. Comput. Sci., vol. 36, no. 2, pp. 258–269, 1996.

[96] Rabow and H. A. Scheraga, “Improved genetic algorithm for the protein
folding problem by use of a cartesian combination operator,” Protein Sci.,
vol. 5, pp. 1800–1815, 1996.

[97] J. R. Gunn, “Sampling protein conformations using segment libraries and
a genetic algorithm,” J. Chemi. Phys., vol. 106, pp. 4270–4281, 1997.

[98] A. C. W. May and M. S. Johnson, “Improved genetic algorithm-based pro-
tein structure comparisons: Pairwise and multiple superpositions,” Protein
Eng., vol. 8, pp. 873–882, 1995.

[99] M. J. Bayley, G. Jones, P. Willett, and M. P. Williamson, “Genfold: A
genetic algorithm for folding protein structures using NMR restraints,”
Protein Sci., vol. 7, no. 2, pp. 491–499, 1998.

[100] Z. Sun, X. Xia, Q. Guo, and D. Xu, “Protein structure prediction in a
210-type lattice model: Parameter optimization in the genetic algorithm
using orthogonal array,” J. Protein Chem., vol. 18, no. 1, pp. 39–46, 1999.

[101] S. Schulze-Kremer, “Genetic algorithms and protein folding. Methods in
molecular biology,” Protein Structure Prediction: Methods and Protocols,
vol. 143, pp. 175–222, 2000.

[102] A. M. Lesk, Introduction to Bioinformatics. London, U.K.: Oxford
Univ. Press, 2002.

[103] Y. Xiao and D. Williams, “Genetic algorithms for docking of actinomycin
D and deoxyguanosine molecules with comparison to the crystal struc-
ture of actinomycin ddeoxyguanosine complex,” J. Phys. Chem., vol. 98,
pp. 7191–7200, 1994.

[104] D. R. Westhead, D. E. Clark, D. Frenkel, J. Li, C. W. Murray, B. Robson,
and B. Waszkowycz, “PRO-LIGAND: An approach to de novo molecular
design. 3. A genetic algorithm for structure refinement,” J. Comput.- Aided
Mol. Design, vol. 9, no. 2, pp. 139–148, 1995.

[105] G. M. Morris, D. S. Goodsell, R. S. Halliday, R. Huey, W. E. Hart, R.
K. Belew, and A. J. Olsoni, “Automated docking using a Lamarckian ge-
netic algorithm and an empirical binding free energy function,” J. Comput.
Chem., vol. 19, no. 14, pp. 1639–1662, 1998.

[106] A. Bagchi, S. Bandyopadhyay, and U. Maulik, “Determination of molec-
ular structure for drug design using variable string length genetic algo-
rithm,” in Workshop on Soft Computing, High Performance Computing
(HiPC) Workshops 2003: New Frontiersin High-Performance Computing,
Hyderabad, India, 2003, pp. 145–154.

PAL et al.: EVOLUTIONARY COMPUTATION IN BIOINFORMATICS: A REVIEW 615

[107] S. Bandyopadhyay, A. Bagchi, and U. Maulik, “Active site driven ligand
design: An evolutionary approach,” J. Bioinf. Comput. Biol., vol. 3, no. 5,
pp. 1053–1070, 2005.

[108] C. Chen, L. H. Wang, C. Kao, M. Ouhyoung, and W. Chen, “Molecular
binding in structure-based drug design: A case study of the population-
based annealing genetic algorithms,” in Proc. IEEE Int. Conf. Tools with
Artificial Intelligence, 1998, pp. 328–335.

[109] L. H. Wang, C. Kao, M. Ouh-Young, and W. Chen, “Molecular binding:
A case study of the population-based annealing genetic algorithms,” in
Proc. IEEE Int. Conf. Evolutionary Computation, 1995, pp. 50–55.

[110] L. H. Wang, C. Kao, M. Ouh-Young, and W. C. Cheu, “Using an an-
nealing genetic algorithm to solve global energy minimization problem
in molecular binding,” in Proc. 6th Int. Conf. Tools with Artificial Intelli-
gence, 1994, pp. 404–410.

[111] C. D. Rosin, R. S. Halliday, W. E. Hart, and R. K. Belew, “A comparison
of global and local search methods in drug docking,” in Proc. Int. Conf.
Genetic Algorithms, 1997, pp. 221–228.

[112] J. M. Yang and C. Y. Kao, “A family competition evolutionary algorithm
for automated docking of flexible ligands to proteins,” IEEE Trans. Inf.
Technol. Biomed., vol. 4, no. 3, pp. 225–237, Sep. 2000.

[113] C. M. Oshiro, I. D. Kuntz, and J. S. Dixon, “Flexible ligand docking
using a genetic algorithm,” J. Comput.-Aided Mol. Design, vol. 9, no. 2,
pp. 113–130, 1995.

[114] D. E. Clark and D. R. Westhead, “Evolutionary algorithms in computer-
aided molecular design,” J. Comput.-Aided Mol. Design, vol. 10, no. 4,
pp. 337–358, 1996.

[115] V. Venkatasubramanian, K. Chan, and J. Caruthers, “Computer aided
molecular design using genetic algorithms,” Comput. Chem. Eng., vol. 18,
no. 9, pp. 833–844, 1994.

[116] D. M. Deaven and K. O. Ho, “Molecular-geometry optimization with
a genetic algorithm,” Phys. Rev. Lett., vol. 75, no. 2, pp. 288–291,
1995.

[117] G. Jones, P. Willett, and R. C. Glen, “Molecular recognition of receptor
sites using a genetic algorithm with a description of desolvation,” J. Mol.
Biol., vol. 245, pp. 43–53, 1995.

[118] G. Jones, P. Willett, R. C. Glen, A. R. Leach, and R. Taylor, “Further
development of a genetic algorithm for ligand docking and its applica-
tion to screening combinatorial libraries,” American Chemical Society
Symposium Series, vol. 719, Washington, DC: ACS, 1999, pp. 271–291.

[119] D. B. McGarrah and R. S. Judson, “Analysis of the genetic algorithm
method of molecular conformation determination,” J. Comput. Chem.,
vol. 14, no. 11, pp. 1385–1395, 1993.

[120] T. Hou, J. Wang, L. Chen, and X. Xu, “Automated docking of peptides
and proteins by using a genetic algorithm combined with a tabu search,”
Protein Eng., vol. 12, pp. 639–647, 1999.

[121] P. Willet, “Genetic algorithms in molecular recognition and design,”
Trends Biotechnol., vol. 13, no. 12, pp. 516–521, 1995.

Sankar K. Pal (M’81–SM’84–F’93) received the
Ph.D. degree in radio physics and electronics from
the University of Calcutta, Calcutta, India, in 1974,
and the Ph.D. degree in electrical engineering along
with DIC from Imperial College, University of
London, London, U.K., in 1982.

He is the Director and Distinguished Scientist of
the Indian Statistical Institute, Calcutta. He founded
the Machine Intelligence Unit in 1993, and the Cen-
ter for Soft Computing Research: A National Facility
in 2004 at the Institute in Calcutta. He worked at the

University of California, Berkeley and the University of Maryland, College Park,
in 1986–1987; the NASA Johnson Space Center, Houston, TX, in 1990–1992
and 1994; and in the U.S. Naval Research Laboratory, Washington, DC, in 2004.
He is a co-author of 13 books and about 300 research publications. Since 1997
he has been serving as a Distinguished Visitor of the IEEE Computer Society for
the Asia-Pacific Region, and held several visiting positions in Hong Kong and
Australian universities. He is an Associate Editor of Pattern Recognition Let-
ters, Neurocomputing, Applied Intelligence, Information Sciences, Fuzzy Sets
and Systems, Fundamenta Informaticae and the International Journal of Com-
putational Intelligence and Applications;

Prof. Pal is a Fellow of the Third World Academy of Sciences, International
Association for Pattern recognition, and all the four National Academies for
Science/Engineering in India. He has received the 1990 S.S. Bhatnagar Prize
(which is the most coveted award for a scientist in India), and many pres-
tigious awards in India and abroad including the 1999 G. D. Birla Award,
1998 Om Bhasin Award, 1993 Jawaharlal Nehru Fellowship, 2000 Khwarizmi
International Award from the Islamic Republic of Iran, 2000–2001 FICCI
Award, 1993 Vikram Sarabhai Research Award, 1993 NASA Tech Brief Award,
1994 IEEE TRANSACTION NEURAL NETWORKS Outstanding Paper Award, 1995
NASA Patent Application Award, 1997 IETE-R. L. Wadhwa Gold Medal, and
the 2001 INSA-S.H. Zaheer Medal. He is an Associate Editor of the IEEE
TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, and the
IEEE TRANSACTIONS NEURAL NETWORKS He is a Member, Executive Advisory
Editorial Board, IEEE TRANSACTIONS FUZZY SYSTEMS, Int. Journal on Image
and Graphics, and Int. Journal of Approximate Reasoning; and a Guest Editor
of IEEE Computer.

Sanghamitra Bandyopadhyay (SM’05) received
the B.Sc. and B.Tech. degrees in physics and com-
puter science in 1988 and 1992, respectively, the Mas-
ters degree in computer science from the Indian In-
stitute of Technology (IIT), Kharagpur, in 1994, and
the Ph.D. degree in computer science from the Indian
Statistical Institute, Calcutta, in 1998.

Currently, she is an Associate Professor at the
Indian Statistical Institute. She has worked for Los
Alamos National Laboratory, in 1997, as a Graduate
Research Assistant, in the University of New South

Wales, in 1999, as a Post Doctoral Fellow, in the Department of Computer Sci-
ence and Engineering, University of Texas at Arlington, in 2001 as Researcher,
and in the Department of Computer Science and Engineering, University of
Maryland, in 2004 as Visiting Research Faculty. Her research interests include
evolutionary and soft computation, pattern recognition, data mining, bioinfor-
matics, parallel and distributed systems and VLSI. She has published over 70
articles in international journals, conference, and workshop proceedings, edited
books and journal special issues, and served on the committees of several confer-
ences and workshops. She is on the editorial board of the International Journal
on Computational Intelligence.

Dr. Bandyopadhyay is the first recipient of the Dr. Shanker Dayal Sharma
Gold Medal and Institute Silver Medal for being the best all round post graduate
performer in IIT, Kharagpur in 1994. She received the Indian National Sci-
ence Academy and the Indian Science Congress Association Young Scientist
Awards in 2000, as well as the Indian National Academy of Engineering Young
Engineers’ Award in 2002. She is serving as the Program Co-Chair of the 1st In-
ternational Conference on Pattern Recognition and Machine Intelligence, 2005,
to be held in Kolkata, India, and has served as the Tutorial Co-Chair, World
Congress on Lateral Computing, 2004, held in Bangalore, India.

Shubhra Sankar Ray received the M.Sc. and
M.Tech. degrees in electronic science and radio-
physics and electronics from the University of
Calcutta, Kolkata, India, in 2000 and 2002, respec-
tively.

Since June 2003, he has been a Senior Research
Fellow of the Council of Scientific and Industrial
Research, New Delhi, India, working at the Ma-
chine Intelligence Unit, Indian Statistical Institute,
Kolkata. His research interests include bioinformat-
ics, evolutionary computation, neural networks, and

data mining.

