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Abstract-This article provides an overview of the application 

of certain soft computing tools namely, genetic algorithms 
(GAs), simulated annealing (SA), and artificial neural networks 

(ANNs) in certain tasks of RNA secondary structure prediction. 
Different tasks like prediction of helix, bulge, hairpin curve, 

internal loop, and multiloop are, first of all, described along 
with their basic features. The relevance of using soft computing 
tools to these problems is then mentioned. These are followed by 

different approaches along with their merits for addressing 

some of the aforesaid tasks. Finally some limitations of the 

current research activity are provided. 

Keywords-RNA, combinatorial optimization, dynamic 
programming, soft computing, genetic algorithms, simulated 
annealing, neural networks. 

I. INTRODUCTION 

Throughout the last few decades determining RNA 
structure has gained very much importance, as it is invaluable 
in creating new drugs and understanding genetic diseases and 
helps biologists to understand the role of the molecule in the 
cell [1 ]. The RNA secondary structure prediction problem 
(2°RNA) is a critical one in molecular biology. By x-ray 
diffraction secondary structure can be determined directly [2], 
but this is difficult, slow, and expensive [3]-[5]. Moreover, 
most RNAs are currently impossible to crystallize. That is 
why developing mathematic and computational methods to 
predict the secondary structure of RNA is very necessary [6]. 

This article provides an overview of the certain soft 
computing based techniques that have been developed over 
the past few years for RNA secondary structure prediction. 
First we describe the biological basics along with the basic 
tasks in structure prediction. Next different soft computing 
tools like genetic algorithm, simulated annealing and artificial 
neural networks to address them are explained. Finally, some 
conclusions and future research directions are presented. 

II. BIOLOGICAL BASICS AND DIFFERENT TASKS IN 

RNA SECONDARY STRUCTURE PREDICTION 

An RNA molecule represents a long chain of monomers 
called nucleotides and each nucleotide consists of a base (any 
one of adenine (A), cytosine (C), guanine (G) and uracil (U))), 
a phosphate group and a sugar group [2]. Traditionally, an 
RNA secondary structure was modeled as a tree. Later, since 
1995, RNA structures is treated as a special string and called 
as string model [7]. The specific sequence of the bases along 
the chain is called primary structure of the molecule. The 
structure is usually modeled as a word over the alphabets' A', 

'C', 'G', and 'U'. Through the creation of hydrogen bonds the 
two groups of complementary bases 'A-U' and 'C-G' form 
stable base pairs, and are known as the Watson-Crick base 
pairs [6] while, A-U pairs form two hydrogen bonds, C-G 
pairs form three hydrogen bonds and tend to be more stable 
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then A-U pairs. Other bases also sometimes pair, especially 
G-U pair. The G-U pairs are known as 'wobble base pairs 
and form one hydrogen bond only. The base-pair structure 
is referred to as the secondary structure of RNA. Generally, 
the secondary structure is determined discretely by 
observing whether each base is either paired or not. Base 
pairs almost always occur in a nested fashion in RNA 
secondary structure. More formally, a base pair between 
positions i and j and a base pair between positions i' and j' 
are nested if and only if i<i'<j'<j or i'<i<j<j'. When 
non-nested base pairs occur, they are called pseudoknots. 
For a clear description of the 2°RNA problem, some 
defmitions [6] of RNA structure are needed : 

Definition 1: Four-letter alphabet is used to represent 
an 
RNA sequence, which is the primary structure of RNA: R 

r,r2r3 • • • •  rn, where rj e {A,U,G,C} and i = 1 ,  2 .. . . . .  n. 
Definition 2 (Canonical Base Pairs): In an RNA 

secondary structure, base pairs are formed as one of the 
three kinds of pairs, C-G (G-C), A-U (U-A), and G-U 
(U-G). Base pairs CG (G-C) and A-U (U-A) are called 
Watson-Crick base pairs. The base pair G-U (U-G) is 
referred to as a wobble base pair. These three types of 
pairings are referred to as canonical base pairs. 

Definition 3: (ij) is used to represent the base pair 
formed by the ith base and the jth base, then the subset of 
set s={(i, j),ISiSjSn} is called RNA secondary structure if s 
satisfies the following conditions: 
(ij) is a canonical base pair. 
for (i, j) e s, (i', j ') e s , if i :=; i' :=;j:=;j' , then i=i'. 
if (i,j) e s, then j-i>3; 

Definition 4: We can call the two base pairs i.j and i'. j' 
compatible if 

(a) i = i' and j = j' (they are the same base pair), 
(b) i <j <i' <j' (i.j precedes i'. j'), or 
(c) i <i' <j' <j (i.j includes i'. j'). 
There are six recognized secondary substructure 

prediction tasks exist and these are 1 )  Helix, 2) Bulge, 3) 
Hairpin curve, 4) Internal loop and 5) Multiloop, and 6) 
External single-stranded regions. A schematic view of 
various substructures are available in Fig. 1 .  Base pairs are 
almost always stacked onto other base pairs in an RNA 
structure. Contiguous stacked base pairs are called stems 
(see Fig. 2) and single stranded subsequences bounded by 
base pairs are called loops [4] (see Fig. 1 ). A loop at the 
end of a stem is called a hairpin loop. Single stranded 
bases occurring within only one side of a stem are called a 
bulge loop. In an internal loop there are single stranded 
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bases interrupting both sides of a stem. The loops [8] 
[9] from which three or more stems radiate are called 
multibranched loops. Single stranded RNA like rRNA folds 
back itself, forming helical areas interspersed with unpaired, 
single-stranded areas. The helices are formed when 
Watson-Crick complementary nucleotides are paired in 
addition to Guanine and Uracil pairs. Helix generation 
proceeds first, by iterating through all canonical base pairs 
(see definition 2) for a given RNA sequence and then 
attempting by stacking additional base pairs on top of 
existing ones. Stacked pairs, which form helices, provide 
stability in the secondary structure. There are two specified 
constraints for helices. First, each helix must have at least 
three stacked base pairs. Second, the sequence or loop 
connecting the two strands must be at least 3 nucleotides long 
(see definition 3). Since the generation of a helix terminates 
at the first mismatched base pair, other secondary structures 
are implicitly defined in the various bulges and loops which 
remain outside of the stacked pairs. Thus, the determination 
of helices alone is considered sufficient, in some 
investigations [3], [5], [10], to account for all other secondary 
structure elements. The different structural elements which 
can manifest themselves in the resulting secondary structure 
include different loops and external bases [4]. Most of the 
works in RNA secondary structure prediction is based on free 
energy minimization of a single RNA sequence. 
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Fig. I. Different types of secondary substructures in RNA 

U8��� 
G-C 
U-A 
A-U 
U-A 
G-C 
U-G 

S'A
G CG3• 

Fig. 2. The region inside the box is an example of a stem. At the top, the 
unbound nucleotides forms a hairpin loop. 

The process, of free energy minimization, predicts the 
secondary structure based on different thermodynamic 
models [3] and has been studied since the early 1970s [11]. 

Assumptions are that the natural fold is a low energy 
structure and the contributions of RNA secondary structure 
components, such as stems and loops, are independent and 
additive. Studying every possible structure for a sequence 
would solve the folding problem, but it is not feasible, and 
needs searching techniques to find the minimized energy 
structure. In an alternative approach, RNA secondary 
structures can be predicted by comparative sequence 
analysis using functionally related sequences. In this 
method, a structure is predicted by searching an alignment 
for base-pairings that are common to all sequences in the 
dataset and requires multiple sequences and large sample 
sizes (typically 1 ,000 structures). When the number of 
available sequences with high similarity is small or when 
there is only a single RNA molecule, prediction of RNA 
structure based on free energy minimization is the most 
widely used approach. 

RNA tertiary structure is governed by interactions 
between secondary structures through formation of 
additional hydrogen bonds or hydrophobic interactions. 
The interactions that determine secondary structure are 
generally significantly stronger than those governing 
tertiary structure. It is generally assumed that the influence 
of tertiary structure on secondary structure is negligible; 
consequentially, secondary structures can be determined 
independently of tertiary structures. 

III. SOFT COMPUTING IN RNA SECONDARY STRUCTURE 

PREDICTION 

One of the first attempts to predict RNA secondary 
structure using dynamic programming by maximizing the 
number of base-pairs and using a simple nearest-neighbor 
energy model is presented in [12]. However, the time and 
memory requirements of the dynamic programming based 
algorithms (DPA) [13], [14] are prohibitive. This has 
prompted researchers to use soft computing tools like GAs 
[15], SA [16] and ANNs [17] to achieve near optimal 
results in less computational time and memory requirement. 
Soft computing based methods try to find low energy stable 
structures as these structures are most likely to be found 
naturally. In order to calculate the free energy of the 
complete structure, the free energy contribution from each 
substructure is summed. Although it is expected that the 
lowest energy structure is the natural fold, it is not always 
true. Often, external interactions affect the resulting 
structure. Although, DP As traditionally yield only one 
optimal structure with minimum free energy, the natural 
structure may not be the one with minimum free energy. 
On the other hand, soft computing tool like GAs provide a 
population of solutions as sub-optimal structures and also 
makes it possible to investigate not only the minimum free 
energy structure but also other low energy structures that 
may be closer to the natural fold. 
A. ANN for RNA Secondary Structure Prediction 

Artificial Neural Network (ANN) based algorithm to 
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predict the RNA secondary structure by maximizing base 
pairs are described in [6] and [18]. In [6] Hopfield neural 
networks (HNN) is used, where, base-pairings configuration 
of 2° RNA are determined from RNA primary structure, 
based on the assumption that the most favorable structure is 
similar to the energetically most stable structure. The more 
base pairs are found, the more stable is the secondary 
structure. In order 
to maximize the base pairs of RNA, all possible base pairs of 
certain RNA are mapped into an adjacent graph. The vertices 
of the adjacent graph are the base pairs and the edge of two 
vertices means that the two base pairs are not compatible 
(deff4). Maximizing the base pairs is equivalent to find the 
maximum set of vertices in a graph that each two vertices are 
not edged. The problem is to find the Maximum Independent 
Set (MIS) of this graph. An independent set in a graph is a set 
of vertices, no two of which are adjacent. A MIS is an 
independent set whose cardinality is the largest among all 
independent set of a graph [6]. The problem of finding a MIS 
is NP-complete. 

Fig. 3. A circular representation of RNA secondary structure [6]. 

Considering an adjacent graph of RNA base pairs, it is 
equivalent to certain circle graph of RNA bases. The 
nucleotides here are stretched out uniformly along the 
circumference of a circle and the base pairs are represented 
by circular arcs that link paired bases and meet the circle at 
right angles. A circular graph representation of RNA 
secondary structure can be seen in Fig. 3. Finding a MIS in 
the adjacent graph is equivalent to finding the maximal 
planar subgraph of a corresponding circle graph, in which an 
arc stands for a base 
pair. The transition of this problem is also illustrated in [6]. 
HNN is used to find the maximal planar subgraph of a 
corresponding circle graph. A cost function, termed energy, 
which is a measure of system-wide constraint violation is 
used here. A unit's contribution to the networks energy can 
be computed locally by the following equation: 

(1) 

Where ak is the activation level of the ith unit, and ffiki is 
the connection weight between the ith and Jth units. The 
unit turns on/off depending on which state lowers the 
networks energy. Since the absolute value of the energy is 
bounded by the weights, the search is guaranteed to 
converge, if asynchronous node updating is used. 
In the algorithm, n neurons are used to represent the n arcs 
of a circle graph, where each neuron performs the 
following binary function: 

V; = I if U; >0, 0 otherwise 
Where V; and U; are the output and input of the ith 

neuron. 
V;= 1 means that the ith arc is not embedded in the circle 
graph, V FO indicates that the ith arc is embedded in the 
circle graph. The motion equation of ith neuron is given 
as: 

dU/dt = A(r; dij(1 - Fj)(distance(i)r1(1 - Fj)p(ir l -
Bh(�rdij(l- Fj))V;p(i)) (2) 

where, dxy=l if xth arc and the yth arc intersect each 
other 
in the circle graph, 0 otherwise. 

In [18], class information of RNA in the initialization 
of Hopfield network is introduced as secondary structures 
of non-coding RNAs are believed to be conservative on the 
same class. The work is otherwise similar to that in [6]. As 
the initialization is improved with class information, 
experimental results are also found superior to the related 
work. 

B. GAs for RNA Secondary Structure Prediction: 
The possibilities of using GAs for the prediction of 

RNA secondary structure were investigated in [7], [19]. 
The implementations used a binary representation for the 
solutions (chromosomes in GAs). The algorithm, using the 
procedure of stepwise selection of the most fit structures 
(similarly to natural evolution), allows different models of 
fitness for determining RNA structures. The analysis of 
free energies for intermediate foldings suggests that in 
some RNAs the selective evolutionary pressure suppresses 
the possibilities for alternative structures that could form in 
the course of transcription. The algorithm had inherent 
incompatibilities of 
stems due to the binary representation of the solutions. 

Wiese et al. [10] used GAs to predict the secondary 
structure of RNA molecules, where the secondary 
structure is encoded as a permutation of helices to 
overcome the inherent incompatibilities of binary 
representation for RNA secondary structure prediction. At 
first, a set of all potential helices, H, is generated from a 
given primary RNA sequence by a helix generation 
algorithm using a thermodynamic model. The RNA 
structure prediction problem then becomes a 
combinatorial optimization problem of finding the subset 
of helices from a set of feasible helices leading to a 
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minimum energy structure. Each helix in H is indexed with 
an integer ranging from 0 to n-1 , n being the total number of 
generated helices. Each chromosome of GA is then encoded 
by a permutation of these integers and provides a solution for 
RNA secondary structure. For example, assuming set H 
contains five helices and 0, 1 , 2, 3, 4  and 3, 1 , 4, 0, 2  are two 
possible structures. Depending on how the individual helices 
conflict, both permutations could result in vastly different 
structures. Helix conflicts are eliminated by decoding the 
permutation from left to right. The helix specified at each 
point in the permutation is checked for conflicts with helices 
to its left. If no conflict is found, the helix is retained; 
otherwise, it is discarded. This process ensures that each 
predicted helix does not share nucleotides with any other 
helix in the subset. In order to calculate fitness of a 
chromosome, i.e. the free energy of the complete structure, 
the free energy contribution from each substructure is 
summed. Three different operators of GAs, i.e. selection, 
crossover, and mutation are then applied to a population of 
chromosomes in a elitist model framework. Different 
combinations of crossover and mutation probabilities ranging 
from 0.0 to 1 .0 in increments of 0.01 and 
0.1 were tested for 400 generations with a population size of 
700 (maximum). At the end of the process, the program 
yields a set of chromosomes with high scores (number of 
base pairings), containing with high probability structures 
analogous to the native RNA structure. Experimental results 
on RNA sequences of lengths 76, 210, 681 , and 785 
nucleotides were provided. It was shown that the Keep-Best 
Reproduction operator has similar benefits as in the traveling 
salesman problem domain. A comparison of several 
crossover operators was also provided. 

The work in [3], is similar to [10] where, a population of 
chromosomes evolves by selection, crossover, and mutation. 
The main difference between [10] and the recent method [3] 
has been the use of better crossover and mutation operators 
and incorporating state-of-the-art thermodynamic models to 
calculate the free energies. In [3], experimental results are 
provided by comparing the predicted structures with 19  
known structures from four RNA classes. 

A massively parallel GA for the RNA folding problem has 
been used in [20]-[22]. The authors demonstrated that the 
GA with improved mutation operator predicts more correct 
(true-positive) stems and more correct base pairs than what 
could be predicted with a dynamic programming algorithm. 

Related works are available in [23] and [1 ]. 

C. SA for RNA Secondary Structure Prediction: 

A stochastic optimization algorithm like Simulated 
Annealing (SA) [16] is also used for solving the RNA 
secondary structure prediction problem [5]. As an iterative 
search optimization algorithm, it is based on successive 
update steps (either random or deterministic) where the 
update step length is proportional to an arbitrarily set 

parameter which can play the role of a temperature. In an 
analogy with the annealing process of metals, the 
temperature is made high in the early stages of the process 
for faster minimization or learning, then it is reduced for 
greater stability. 

It was first described in [24], how to use SA for 
identifying RNA secondary structures without considering 
the free energy minimization approach. In this work an 
algorithm, using SA, for aligning multiple RNA sequences 
to identify possible secondary structure, is presented. Dot 
matrices generated from intra-sequence comparisons are 
used to obtain possible common secondary structures. A 
hit probability for dot matrices is calculated and a score 
function based on this hit probability is defined. Simulated 
annealing is applied to optimize the score function. A 
solution set of multiple sequence alignment is also 
introduced, and the effects of increasing the number of 
alignment gaps and the alignment length on the solution 
set are analyzed. An optimized transition rule, which 
moves two positions in a sequence with each iteration, is 
applied to increase the rate of convergence. 

Schmitz and Steger's [25] used SA for RNA secondary 
structure prediction using free energy minimization 
approach. 
However, their research able to provide limited results 
from a single RNA sequence without any quantitative 
results. Whereas, SARNA-Predict [5] employs a modified 
SA as its search engine, combining a novel mutation 
operator, permutation-based encoding for RNA structure 
and different annealing schedules. Experiments on 33 
individual known structures from eleven RNA classes 
(tRNA, viral RNA, anti-genomic HDV, telomerase RNA, 
tmRNA, rRNA, RNaseP, 5SrRNA, Group I intron 
23SrRNA, Group I intron 16SrRNA, and 16SrRNA) are 
also shown. The method accepts all decreased energy 
structures and probabilistically accepts increased energy 
structures in order to avoid local minima in the search 
space. The decision to either accept or reject a new 
structure is based upon the change in structure (ilEnergy) 
between new and current structure. If ilEnergy = 0, the 
new structure will be accepted. However, if ilEnergy >0, 
the new structure will also be accepted with some 
probability. The Boltzmann distribution is used to 
determine this probability. The probability of accepting 
the new structure, when ilEnergy >0, is given by Eq. 1 ,  
where temperature T i s  the current temperature (a control 
parameter in the annealing process) and E is the energy 
state. This distribution expresses the idea that a system in 
thermal equilibrium at temperature T has its energy 
probabilistically distributed among all different energy 
states (or values of ilEnergy). Even at low temperature, 
there is a chance of the system being accepted with a 
probability as follows: 
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-(Enew -Eo/dJIT -iJCostiT 
Probability[Accept)= e = e (3) 

Again when Enew <Eold , this probability is greater than 
unity; in such cases the change is arbitrarily assigned a 
probability P=l (i.e. the system always takes such an option). 
As a result, this general scheme will most often accept a 
downward step while sometimes accepting an upward step. 
Also, if T is decreased slowly enough, SA is guaranteed to 
reach the best solution. However, it will take an infinite 
number of moves. If T is high, the algorithm is in an 
exploratory phase (all moves have about the same 
probability), and if T is low, the algorithm is in an 
exploitation phase (the greedy moves are most likely). 

IV. CONCLUSION 

An overview of different tasks regarding RNA secondary 
structure prediction and the relevance of soft computing to 
handle them are provided. Soft computing, specially GAs, 
appears to be a very powerful artificial intelligence paradigm 
to handle the structure prediction tasks. Even though the 
current approaches in structure prediction are very helpful in 
identifying patterns and functions of RNAs, the output results 
are still far from being perfect as simplified models are only 
considered in most of the works. There are some general 
characteristics that might appear to limit the effectiveness of 
soft computing. For example, in GAs, the basic selection, 
crossover and mutation operators are common to all 
applications; so researches are now focused to design 
problem specific operators to get better results and to reduce 
computational time. 
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