
New Computational Methods for

Gene Analysis from Microarray Data

A thesis submitted to the Jadavpur University in

partial fulfillment for the Degree of Doctor of

Philosophy in Engineering

Shubhra Sankar Ray

Center for Soft Computing Research: A National

Facility

Indian Statistical Institute

Kolkata-700108, INDIA

JADAVPUR UNIVERSITY
KOLKATA-700 032, INDIA

INDEX NO. 64/06/Engg.

1. Title of the thesis:

New Computational Methods for Gene Analysis from Microarray Data

2. Name, Designation & Institution of the Supervisor/s:

1. Prof. Sankar K. Pal

Director

Indian Statistical Institute

Kolkata-700108, India

2. Dr. Sanghamitra Bandyopadhyay

Associate Professor

Machine Intelligence Unit

Indian Statistical Institute

Kolkata-700108, India

3. List of publications:

1. S. K. Pal, S. Bandyopadhyay, and S. S. Ray. Evolutionary Computation

in Bioinformatics: A Review. IEEE Transactions on Systems, Man, and

Cybernetics, Part-C, 36(5):601–615, 2006.

2. S. S. Ray, S. Bandyopadhyay, P. Mitra, and S. K. Pal. Bioinformatics

in Neurocomputing Framework. IEE Proc. Circuits Devices & Systems,

152:556–564, 2005.

3. S. S. Ray, S. Bandyopadhyay, and S. K. Pal. Genetic Operators for Com-

binatorial Optimization in TSP and Microarray Gene Ordering. Applied

Intelligence, 26(3):1830–195, 2007.

4. S. S. Ray, S. Bandyopadhyay, and S. K. Pal. Gene Ordering in Parti-

tive Clustering using Microarray Expressions. Journal of Biosciences,

32(5):1019–1025, 2007.

5. S. S. Ray, S. Bandyopadhyay, and S. K. Pal. Dynamic Range Based

Distance Measure for Microarray Expressions and a Fast Gene Ordering

Algorithm. IEEE Transactions on Systems, Man, and Cybernetics, Part-

B, 37(3):742–749, 2007.

6. S. S. Ray, S. Bandyopadhyay, and S. K. Pal. Combining Multi-Source In-

formation through Functional Annotation Based Weighting: Gene Func-

tion Prediction in Yeast. IEEE Transactions on Biomedical Engineering,

2008 (under revision).

7. S. S. Ray, S. Bandyopadhyay, P. Mitra, and S. K. Pal. Bioinformatics

in Neurocomputing Framework. The International Conference on Com-

puters and Devices for Communication, CODEC-04, page 94, January

1-3, Kolkata, India, 2004.

8. S. S. Ray, S. Bandyopadhyay, and S. K. Pal. New Operators of Genetic

Algorithms for Traveling Salesman Problem. The 17th International

Conference on Pattern Recognition, ICPR-04 volume 2, pages 497–500,

Cambridge, UK, 23-26 August 2004.

9. S. S. Ray, S. Bandyopadhyay, and S. K. Pal. New Genetic Operators for

Solving TSP: Application to Microarray Gene Ordering. The First In-

ternational Conference on Pattern Recognition and Machine Intelligence,

PReMI 2005, pages 617-622, December, Kolkata, India, 2005.

10. S. S. Ray, S. Bandyopadhyay, and S. K. Pal. Gene Ordering in Parti-

tive Clustering using Microarray Expressions. International Conference

on Bioinformatics, INCOB 2006, page 33, 18-20 December, New Delhi,

2006.

11. S. S. Ray, S. Bandyopadhyay, and S. K. Pal. New Distance Measure

for Microarray Gene Expressions using Linear Dynamic Range of Photo

Multiplier Tube. International Conference on Computing: Theory and

Applications, Kolkata, India, pages 337–341, 2007.

12. S. S. Ray, S. Bandyopadhyay, and S. K. Pal. Predicting Gene Function

in Yeast through Adaptive Weighting of Multi-Source Information. The

Eighth International Conference on Systems Biology, ICSB 2007, online

proceedings, no. H03, October 1-6, Long Beach, California, USA, 2007.

4. List of Patents: Nil

5. List of Presentations in National/International:

1. Bioinformatics in Neurocomputing Framework. The International Con-

ference on Computers and Devices for Communication, CODEC-04, Jan-

uary 1-3, Kolkata, India, 2004.

2. New Genetic Operators for Solving TSP: Application to Microarray Gene

Ordering. The First International Conference on Pattern Recognition

and Machine Intelligence, PReMI 2005, December, Kolkata, India, 2005.

3. New Distance Measure for Microarray Gene Expressions using Linear

Dynamic Range of Photo Multiplier Tube. International Conference

on Computing: Theory and Applications, ICCTA, March 5-7, Kolkata,

India, 2007.

Dedicated to my beloved father

CERTIFICATE

This is to certify that the thesis entitled “New Computational Methods for Gene

Analysis from Microarray Data” submitted by Mr. Shubhra Sankar Ray, who got

his name registered on “08.09.06” for the award of Ph. D. (in engineering) degree of

Jadavpur University, is absolutely based upon his own work under the supervision

of Prof. Sankar K. Pal and Dr. Sanghamitra Bandyopadhyay and that neither his

thesis nor any part of the thesis has been submitted for any degree/diploma or any

other academic award anywhere before.

————————————– ——————————————

Prof. Sankar K. Pal Dr. Sanghamitra Bandyopadhyay

Director Machine Intelligence Unit

Indian Statistical Institute Indian Statistical Institute

Kolkata-700108, India Kolkata-700108, India

iii

ACKNOWLEDGEMENTS

First of all I express my gratitude to my supervisors, Prof. (Dr.) Sankar K.

Pal and Dr. Sanghamitra Bandyopadhyay, without whose guidance, encouragement

and affection this thesis could not have been completed. They introduced me to the

interesting field of Bioinformatics and continued helping me in every stage of my

endeavors to delve into its depths. Thanks are due to them for their kind permission

to include the joint research work in this thesis.

Word seems to be insufficient to thank Dr. Pabitra Mitra, Department of Com-

puter Science, Indian Institute of Technology, Kharagpur, who guided me like a path

finder to start my research carrier. I must also thank Prof. C. A. Murthy, Prof. S.

Mitra, Dr. Rajat K. De, Dr. D. P. Mandal and Dr. B. Uma Sankar for their affec-

tion, advice and encouragement during this work. I owe a lot to my colleagues and

friends, Mr. B. L. Narayan, Mr. Suman Saha Mr. Debashis Sen, Dr. Kuntal Ghosh

and Dr. Pradipto Maji for providing me a cooperative research environment. I am

thankful to Mr. Surya Bhattacharya, Mr. Bikram Roy, Mr. Joydeb Gupta, Mrs.

Neyoti Das, Mr. Sujit Basak, Mr. Chandrasekhar Das and Mr. Sachchidananda

Mahato for helping me many ways with all machines, softwares and official work

related problems.

I would like to acknowledge Dr. Martin Mnsterktter, CYGD coordinator at

MIPS, for fixing the bugs in downloading functional categories and Dr. Maria C.

Costanzo, Senior Scientific Curator of Saccharomyces Genome Database, for map-

ping the gene names from Yeast GO-Slim process annotations to ORFs. Supports

of the Dept. of Science and Technology, Govt. of India to the Center for Soft

Computing Research through its IRHPA scheme and the Council of Scientific and

Industrial Research (CSIR), New Delhi, to the grant no. 22(0346)/02/EMR-II are

also acknowledged. I express my sincere thanks to the authorities of ISI for the

facilities extended to carry out my research work.

v

Finally, I shall forever remain indebted to my family members for their constant

help, encouragement and love throughout my academic carrier, without whose co-

operation it would have been impossible for me to have done all this.

ISI, Kolkata

April, 2008. Shubhra Sankar Ray

Contents

1 Introduction 1

1.1 Introduction . 1

1.2 Basic Concepts of Cell Biology . 3

1.3 Basics of Gene Expression . 6

1.4 Basics of Microarray . 7

1.5 Drawbacks of Microarray Technology 8

1.6 Tasks Involved in the Analysis of Gene Expression Data 9

1.6.1 Missing Value Prediction . 10

1.6.2 Normalization . 11

1.6.3 Clustering Methods . 14

1.6.4 Ordering Methods . 23

1.6.5 Methods for Combining Multi-Source Information with Mi-

croarray Data . 27

1.6.6 Statistical methods . 29

1.6.7 Gene Annotations . 30

1.7 Scope of the Thesis . 31

1.7.1 Gene Ordering in Genetic Algorithm (GA) Framework [88,91] 32

1.7.2 Integrating Gene Ordering with Partitive Clustering [86,90] 32

1.7.3 New Distance Measure for Microarray Gene Expressions using

Linear Dynamic Range of Photo Multiplier Tube [89,92] . . 33

1.7.4 Adaptively Combining Multi-Source Information with Microar-

ray Data [93,94] . 33

1.8 Conclusions and Scope for Future Research 34

2 Genetic Operators for Combinatorial Optimization in TSP and

Microarray Gene Ordering 35

vii

2.1 Introduction . 35

2.2 TSP Definition and Relevance in Microarray Gene Ordering 38

2.3 Genetic Algorithms for Solving TSP and MGO 40

2.3.1 Chromosome Representation and Nearest-Neighbor Heuristic 40

2.3.2 Selection and Elitism . 42

2.3.3 Crossover . 42

2.3.4 Mutation . 43

2.4 New Operators of GAs . 44

2.4.1 Nearest Fragment Heuristic (NF) 45

2.4.2 Modified Order Crossover (MOC) 47

2.5 Experimental Results . 48

2.5.1 Comparison with Other GA Approaches for TSP 50

2.5.2 Comparison with Other LK Based Approaches for TSP . . . 53

2.5.3 Results for Microarray Gene Ordering 54

2.6 Discussion and Conclusions . 56

3 Gene Ordering in Partitive Clustering using Microarray Expres-

sions 59

3.1 Introduction . 59

3.2 Existing Approaches for Gene Expression An- alysis 61

3.2.1 Distance Measure . 61

3.2.2 Gene Ordering Methods . 62

3.3 Materials and Methods . 63

3.3.1 Description of Data Sets . 63

3.3.2 Missing Value Prediction . 64

3.3.3 New Hybrid Algorithm for Ordering Genes in Partitive Clus-

tering . 64

3.4 Biological Interpretation . 65

3.5 Experimental Results . 66

3.5.1 Relevance of Gene Ordering in Partitive Clustering 67

3.5.2 Comparative Performance of the Algorithms 70

3.6 Conclusion . 72

4 New Distance Measure for Microarray Gene Expressions using Lin-

ear Dynamic Range of Photo Multiplier Tube 73

4.1 Introduction . 73

4.2 Existing Approaches . 75

4.2.1 Distance Measures . 75

4.2.2 Gene Clustering Methods 76

4.2.3 Gene Ordering Methods . 76

4.3 Materials and Methods . 77

4.3.1 Preliminary Concepts for Measuring Gene Expression with

Fluorescence Scanner . 77

4.3.2 Description of Data Sets . 80

4.3.3 New Distance Measure . 81

4.3.4 New Ordering Algorithm . 85

4.4 Experimental Results . 87

4.4.1 Comparative Performance of Algorithms and Distance Measures 87

4.4.2 Statistical Analysis of Maxrange-M Distance Measure and

Minimal Neighbor Ordering Algorithm 92

4.4.3 Subcluster Identification and Grouping of Correlated Genes

by Minimal Neighbor . 93

4.5 Conclusion . 95

5 Combining Multi-Source Information through Functional Annota-

tion based Weighting: Gene Function Prediction in Yeast 97

5.1 Introduction . 97

5.2 Methods . 99

5.2.1 Data Sources and Similarity Extraction Techniques 101

5.2.2 Scoring the Similarities in a Common Framework 105

5.2.3 New Framework for Data Source Integration 107

5.2.4 Gene Function Prediction 109

5.3 Results . 110

5.3.1 Comparative Performance of Methods and Data Sour- ces . 111

5.3.2 Influence of Number of Classified Genes on Functional Anno-

tation based Weighting . 113

5.3.3 Gene Function Prediction based on Clustering Results . . . 114

5.3.4 Evaluation Based on Independent Training and Test Sets . . 117

5.4 Conclusion . 119

6 Conclusions and Scope for Further Research 121

List of Tables

2.1 Different parameters of FRAG GA, SWAP GATSP, OX SIM, and

MOC SIM . 49

2.2 Comparison of the results over 30 runs obtained using FRAG GA,

SWAP GATSP, OX SIM, and MOC SIM for different TSP instances 50

2.3 Average results for various GAs . 52

2.4 Average results for various LK based algorithms 53

2.5 Comparison of the results over 30 runs in terms of sum of gene ex-

pression distances for microarray data using various algorithms . . . 55

2.6 Comparison of the best results over 30 runs in terms of S(n) values

for microarray data . 56

3.1 Summary for different microarray data sets 63

3.2 Gene subclusters found by SOM+FRAG GALK and their functional

category indexes in first 6 clusters identified using SOM for Yeast

Complex data . 69

3.3 Indexes and corresponding functional category 70

3.4 Summation of gene expression distances (F1(n)), biological Score (S),

and computation time of ordering in seconds (within parenthesis) for

different hybrid algorithms using SOM 72

4.1 Summary for different microarray data sets 80

4.2 Summation of gene expression distances computed in terms of F (n)

(Eq. 2.2 for FRAG GALK, MN and B-joseph) and F1(n) (Eq. 3.4

for SOM+MN) value for different ordering algorithms and distance

measures . 88

xi

4.3 Summation of gene expression distances computed in terms of F (n)

(Eq. 2.2 for average, complete and single linkage) and F1(n) (Eq.

3.4 for SOM) value for different clustering algorithms and distance

measures . 88

4.4 Biological Score and Percentage of Improvement (PI) value (within

parenthesis) for different gene ordering algorithms and distance mea-

sures . 89

4.5 Biological Score and Percentage of Improvement (PI) value (within

parenthesis) for different clustering algorithms and distance measures 90

4.6 Biological Score and Percentage of Improvement (PI) value (within

parenthesis) for ‘SOM+MN’ and SOM 90

4.7 Selected Biological Scores for Maxrange-E for different algorithms

and Maxrange-E distance . 91

4.8 Results of t-test for different pairs of distance measures 93

4.9 Results of t-test for different pairs of algorithms 93

5.1 Top 12 function predictions of unclassified gene at BS cut-off value

of 0.77 . 116

List of Figures

1.1 Various parts of a DNA . 4

1.2 Coding of amino acid sequence from DNA sequence 4

1.3 Different levels of protein structures 6

1.4 Average linkage clustering of genes and conditions related with DNA

microarray gene expression of Herpes virus [51]. The dendrogram at

the left represents the relatedness of the patterns of gene expression.

The three major clusters are color coded according to the class of

genes they represent and the times at which expression is first de-

tected: primary lytic genes (0 to 10 h), secondary lytic genes (10 to

24 h), and tertiary lytic genes (48 to 72 h). Each column represents

a condition taken at different times in hours after TPA induction

(labelled above). The dendrogram at the top relates the conditions

according to the pattern of gene expression. 16

1.5 Computation of distance (d(r, s)) between clusters in single linkage

clustering. Here the distance between every possible object pair

(xri,xsj) is computed, where object xri is in cluster r and object

xsj is in cluster s. The minimum value of these distances is said to

be the distance between clusters r and s. In other words, the dis-

tance between two clusters is given by the value of the shortest link

between the clusters. At each stage of clustering, the clusters r and

s , for which d(r, s) is minimum, are merged. 17

xiii

1.6 Computation of distance (d(r, s)) between clusters in average linkage

clustering. Here the distance between two clusters is defined as the

average of distances between all pairs of objects, where each pair

(xri,xsj) is made up of one object from each group. Object xri is in

cluster r, object xsj is in cluster s, and nr and ns are sizes of clusters

r and s, respectively. 17

1.7 Computation of distance (d(r, s)) between clusters in complete link-

age clustering. Here the distance between every possible object pair

(xri,xsj) is computed, where object xri is in cluster r and object xsj

is in cluster s. The maximum value of these distances is said to be

the distance between clusters r and s. 18

1.8 The basic network structure for the SOM. 20

1.9 Neighborhood Nc, centered on unit c (xc, yc). Three different neigh-

borhoods are shown at distance d = 1, 2, and 3. 21

1.10 Change in the leaf ordering due to an internal node flip [14]. Different

orderings are obtained by flipping the two subtrees rooted at the

circled node while, maintaining the same tree structure. Since there

are n− 1 internal nodes there are 2n−1 possible orderings of the tree

leaves. 25

1.11 A binary tree rooted at node v. For every pair of leaves iεW and jεX

the optimal leaf ordering, M(v, i, j), is computed when the leftmost

leaf of W is i and the rightmost leaf of X is j 26

2.1 The Pseudo-code of Genetic Algorithm (GA) 41

2.2 The Pseudo-code for FRAG GA . 44

2.3 Cost of fittest string Vs. Iteration for kroa100.tsp 52

3.1 Comparing SOM with ‘SOM+FRAG GALK’ for Fibroblast data (Fig.

a and Fig. b respectively) and Yeast Complex data (Fig. c and Fig.

d respectively). The expression profiles are represented as lines of

colored boxes using Expander [100], each of which corresponds to a

single experiment. Some grouped genes obtained by FRAG GALK

(Fig. b and Fig. d) have similar expression patterns and are coex-

pressed in each group. 67

3.2 Comparing CLICK (Fig. a), ‘CLICK + FRAG GALK’ (Fig. b), K-

means (Fig. c), ‘K-means+FRAG GALK’ (Fig. d), and B-Joseph’s

method (Fig. e) for Herpes data. 71

4.1 Calibration curves of photomultiplier tube under different PMT gains.

X-axis: log10 concentration, Y-axis: log10 fluorescence intensity. A:

Cy5 dye; B: Cy3 dye. Representative calibration curves are presented

in C (Cy5 and Cy3 channels are scanned under the same PMT gain

of 700 V) and D (the Cy5 and Cy3 channels are scanned at 700 V

and 400 V, respectively). (Figure is taken from [33]). 78

4.2 Expression profile for three genes. According to Maxrange-M, dis-

tance between genes X and Y is higher than Z and Y which is in

opposition with Pearson correlation and Euclidean distance 84

4.3 Comparing CLICK (Fig. a), ‘CLICK+MN’ (Fig. b), and ‘CLICK

+FRAG GALK’ (Fig. c) for Herpes data. 94

5.1 Comparing the re-scored similarity values for different types of data

sources to obtain equivalency in the common framework of Yeast

GO-Slim process annotations. The positive predictive values (PPV)

versus the similarity values are plotted for each data source. 106

5.2 Comparing the values of PPV using BS, by varying weights of PPV

of different data sources for top 26432 gene pairs. When a particular

weight is varied the other weights are kept constant at the values

shown in the figure. The curves obtained with c=0 indicate the

instances when KEGG pathway profile is not included in the inte-

gration process. 109

5.3 Comparison between the Biological Score (BS), Lee et al.’s Proba-

bilistic Network, and individual data source in terms of PPV versus

the number of top gene pairs. While, the available annotations (us-

ing vector V (g) in Eq. 5.5) from Yeast GO-Slim process is used to

train the weighting factors in BS and ‘Probabilistic Network using

same data sources’, the available annotations from MIPS are used

to evaluate (using PPV) the gene pairs of all the methods and data

sources. 111

5.4 Variation of PPV , using BS, with nine different percentages of clas-

sified genes. 113

5.5 Comparison between the Biological Score (BS), Lee et al.’s Proba-

bilistic Network, and individual data source in terms of PPV versus

the number of top gene pairs. The available annotations (using vec-

tor V (g) in Eq. 5.5) from Yeast GO-Slim process and MIPS are first

merged for all the genes, and then the genes (with annotation vec-

tors) are randomly splited into disjoint training and test sets. While,

the training set is used to determine the weighting factors in BS and

‘Probabilistic Network using same data sources’, the test set is used

to evaluate (using PPV) the gene pairs of all the methods and data

sources. 118

Chapter 1

Introduction

1.1 Introduction

Over the past few decades, major advances in the field of molecular biology, coupled

with advances in genomic technologies, have led to an explosive growth in the bio-

logical information generated by the scientific community. This deluge of genomic

information has, in turn, resulted in the introduction of bioinformatics, computa-

tional genomics and proteomics, large-scale analysis of complete genomes and the

proteins that they encode for relating specific genes to diseases, specialized tools

to view and analyze the data, and computerized databases to store, organize and

index the data.

Bioinformatics is an interdisciplinary field involving biology, computer science,

mathematics and statistics to analyze biological sequence data, genome content and

arrangement, and to predict the function and structure of macromolecules [77]. It

can be viewed as the use of computational methods to make biological discoveries

[12]. The ultimate goal of the field is to enable the discovery of new biological

insights as well as to create a global perspective from which unifying principles

in biology can be derived [3]. There are three important sub-disciplines within

bioinformatics:

• Development of new algorithms and models to assess different relationships

among the members of a large biological data set in a way that allows re-

searchers to access existing information and to submit new information as

they are produced

1

2

• Analysis and interpretation of various types of data including DNA, RNA,

mRNA, amino acid sequences, protein domains, and protein structures; and

• Development and implementation of tools that enable efficient access and

management of different types of information.

The most powerful and commonly used technique for efficiently managing and

analyzing huge amount of genomic data is that involving microarray, which has

enabled the monitoring of the expression levels of more than thousands of genes si-

multaneously. A microarray is typically a glass slide, onto which thousands of genes

are attached at fixed locations (spots). It allows a massive number of characterized

samples to be assayed in parallel, saving time and money, and sometimes allowing

the elucidation of pathways and interactions which ordinarily would not have been

discovered using traditional methods. They require little labelled probe and small

amount of space, deliver data quickly and relatively easy to use, and are stable for

long periods of time. Microarrays can be manufactured in several different ways,

and their flexibility makes them appropriate for all types of research needs [67]. By

performing biological experiments gene expression levels are obtained from microar-

ray [105]. Gene expression is the process by which a gene’s coded information is

converted into the structures present and operating in the cell. Expressed genes in-

clude those that are transcribed into mRNA and gene expression involves the study

of the level of mRNA in cells under different conditions. A key step in the analy-

sis of microarray gene expression data is the identification of groups of genes that

manifest similar expression patterns. This translates to the algorithmic problem of

clustering and ordering of gene expression data.

The present thesis provides some new results of investigation concerning cluster-

ing and ordering of gene expression microarray data, development of new distance

measures for genes using an microarray experiment specific normalization factor,

and prediction of biological functions of unclassified genes by integrating gene ex-

pression information with other biological data sources. Before we describe the

scope of the thesis in Section 1.7, an overview of the basic concepts of cell biology,

involving DNA, RNA, mRNA and protein is first presented in Section 1.2. The

basics of gene expression along with its relation with cell biology are explained in

Section 1.3. Methodologies for preparing microarray are mentioned in Section 1.4.

In Section 1.6 various computational methods available to analyze and interpret the

3

microarray data are explained. Finally, the outline of the thesis and conclusions

including some future research directions are presented.

1.2 Basic Concepts of Cell Biology

DNA (deoxyribonucleic acid) and proteins are biological macromolecules built as

long linear chains of chemical components. DNA strand consists of a large sequence

of nucleotides, or bases. For example, there are more than 3 billion bases in human

DNA sequences. DNA plays a fundamental role in different bio-chemical processes

of living organisms in two respects. First it contains the templates for the synthesis

of proteins, which are essential molecules for any organism [99]. The second role in

which DNA is essential to life is as a medium to transmit hereditary information

(namely the building plans for proteins) from generation to generation. Proteins

are responsible for structural behavior.

The units of DNA are called nucleotides. One nucleotide consists of one ni-

trogen base, one sugar molecule (deoxyribose) and one phosphate. Four nitrogen

bases are denoted by one of the letters A (adenine), C (cytosine), G (guanine) and T

(thymine). A linear chain of DNA is paired to a complementary strand. The com-

plementary property stems from the ability of the nucleotides to establish specific

pairs (A-T and G-C). The pair of complementary strands then forms the double

helix that was first suggested by Watson and Crick in 1953. Each strand therefore

carries the entire information and the biochemical machinery ensures that the in-

formation can be copied over and over again even when the “original” molecule has

long since vanished.

A gene is primarily made up of ‘sequence of triplets’ of the nucleotides (exons).

Introns (non coding sequence) may also be present within gene. Not all portions

of the DNA sequences are coding. Coding zone indicates that it is a template for

a protein. As an example, for the human genome only 3%-5% of the sequence are

coding, i.e., they constitute the gene. The promoter is a region before each gene in

the DNA that serves as an indication to the cellular mechanism that a gene is ahead.

For example, the codon AUG is a protein which codes for methionine and signals

the start of a gene. Promoters are key regulatory sequences that are necessary

for the initiation of transcription. Transcription is a process in which ribonucleic

4

acid (RNA) is formed from a gene and through translation aminoacids are formed

from RNA. There are sequences of nucleotides within the DNA that are spliced

out progressively in the process of transcription and translation. A comprehensive

survey of the research done in this field is in [123]. In brief, the DNA consists of

three types of non-coding sequences.

1. Intergenic regions: Regions between genes that are ignored during the process

of transcription

2. Intragenic regions (or Introns): Regions within the genes that are spliced out

from the transcribed RNA to yield the building blocks (Exons) of the genes.

3. Pseudogenes: Genes that are transcribed into the RNA and stay there, with-

out being translated, due to the action of a nucleotide sequence.

Junk Exon Junk

Intron Intron

Exon Exon

IRIntergenic
Region (IR)

Gene

Figure 1.1: Various parts of a DNA

Proteins are polypeptides, formed within cells as a linear chain of amino acids

[99]. Amino acid molecules bond with each other by eliminating water molecule

and form peptides. 20 different amino acids (or ”residues”) are available, which are

denoted by 20 different letters of the alphabet. Each of the 20 amino acids is coded

by one or more triplets (or codons) of the nucleotides making up the DNA. Based on

the genetic code the linear string of DNA is translated into a linear string of amino

acids, i.e., a protein via mRNA (messenger RNA). For example, the DNA sequence

GAACTACACACGTGTAAC codes for the amino acid sequence ELHTCN (shown

in Fig. 1.2).

GAA CTA CAC ACG TGT AACGAA CTA CAC ACG TGT AAC
E HL C NT

Figure 1.2: Coding of amino acid sequence from DNA sequence

5

Identical protein sequences result in identical 3-D structures. So it follows that

similar sequences may result in similar structures, and this is usually the case.

The converse, however, is not true: identical 3-D structures do not necessarily

indicate identical sequences. It is because of this that there is a distinction between

”homology” and ”similarity”. There are examples of proteins in the databases that

have nearly identical 3-D structures, and are therefore homologous, but do not

exhibit significant (or detectable) sequence similarity. Pairwise comparisons do not

readily show positions that are conserved among a whole set of sequences and tend

to miss subtle similarities that become visible when observed simultaneously among

many sequences. Thus one wants to simultaneously compare several sequences.

Structural genomics is the prediction of 3-dimensional structure of a protein

from the primary amino acid sequence [23]. This is one of the most challenging

tasks in bioinformatics. The five levels of protein structure are described below.

Four of them are illustrated in Figure 1.3.

a) Primary structure is the sequence of amino acids that compose the protein.

b) The secondary structure of a protein is the spatial arrangement of the atoms

constituting the main protein backbone. Linus Pauling was the first to develop

a hypothesis for different potential protein secondary structures. He developed

the α-helix structure and later the β-sheet structure for different proteins. An

α-helix is a spiral arrangement of the protein backbone in the form of a helix

with hydrogen bonding between side-chains. The β-sheets consist of parallel

or antiparallel strands of amino acids linked to adjacent strands by hydrogen

bonding. Collagen is an example of a protein with β-sheets serving as its

secondary structure.

c) The Super-secondary structure (or motif) is the local folding patterns built up

from particular secondary structures. For example the EF-hand motif consists

of an α-helix, followed by a turn, followed by another α-helix.

d) Tertiary structure is formed by packing secondary structural elements linked

by loops and turns into one or several compact globular units called domains

i.e., the folding of the entire protein chain.

e) Final protein may contain several protein subunits arranged in a quaternary

structure.

6

a) Primary structure b) Secondary structure

c) Tertiary structure d) Quaternary structure

Figure 1.3: Different levels of protein structures

1.3 Basics of Gene Expression

An important and interesting question in biology, regarding the variation of gene

expression levels is how genes are regulated. Virtually all cell function is carried

out by proteins. So a readout of what and how many proteins are in a cell, at

a particular moment, gives us great deal of information about the state of the

cell and how the genes are expressed in that cell. It was discovered relatively

early on in molecular biology that the abundance and distribution of proteins in

cells are correlated to a large extent to the levels of mRNA (messenger RNA)

[19]. Since almost all cells in a particular organism have an identical genome,

differences in gene expression and not the genome content are responsible for cell

differentiation during the life of the organism. For gene regulation an important role

is played by a type of proteins called transcription factors [99]. The transcription

factors bind to specific parts of the DNA, called transcription factor binding sites

(i.e., specific, relatively short combinations of A, T, C or G), which are located in

promoter regions. Specific promoters are associated with particular genes and are

generally not too far from the respective genes, though some regulatory effects can

7

be located as far as 30,000 bases away, which makes the definition of the promoter

difficult. Transcription factors control gene expression by binding to the gene’s

promoter and either activating (switching on) the gene or repressing it (switching

it off). Transcription factors are gene products themselves, and therefore in turn

can be controlled by other transcription factors. Transcription factors can control

many genes, and some (probably most) genes are controlled by combinations of

transcription factors. Feedback loops are possible. Therefore we can talk about

gene regulation networks. Conventional wisdom is that gene products that interact

with each other are more likely to have similar expression profiles than if they do

not [69].

1.4 Basics of Microarray

Various methods are developed for detecting and quantifying the amount of mRNA

or gene expression level. The methods take advantage of the sequence complimen-

tarity of DNA. The key observation was that single stranded DNA binds strongly

to nitrocellulose membranes which prevents strands from reassociating with each

other but permits the hybridization to complementary RNA [44]. This led to blot-

ting methods, the first of which combined filter hybridization with gel separation of

restriction digests [104]. The blotting methods are serial in nature and the mRNA

is measured one at a time. On the other hand, DNA microarrays allow one to inter-

rogate the mRNA population expressed by thousands of genes at once rather than

serially as in the blotting methods. Another distinction between DNA microarrays

and blotting methods is that the use of impermeable rigid substance such as glass

to bind the DNA sequences in microarrays is practically advantageous over porous

membranes and gel pads in blotting methods.

The two basic types of commonly used DNA microarrays are spotted arrays and

oligonucleotide arrays. In the spotted array methods [31] a large number of cDNAs

are prepared from a cDNA library and then spotted onto a glass slide by a robot.

Each cDNA corresponds to one gene or one exon in the genome of length 100-1000

bp and also referred as a probe. Each probe corresponds to a particular spot in a

microarray slide. In the course of hybridization, RNA from experimental samples

(taken at selected times during the process) is labelled during reverse transcription

with the red-fluorescent dye Cy5 and is mixed with a reference sample (cDNA)

8

labelled in parallel with the green-fluorescent dye Cy3 [31]. After hybridization and

appropriate washing steps, the arrays are scanned to produce images and the images

are further processed by an image analysis program to produce measured red and

green foreground and background intensities for each spot on each array. Before the

gene expression profiles of the RNA samples can be analyzed and interpreted, the

red and green intensities must be normalized (discussed in Section 1.6.2) relative

to one another so that the red/green ratios for all target elements are as far as

possible an unbiased representation of relative expression. If R (red) and G (green)

are the spot-specific, quantified, fluorescent intensities of the target and reference

expression signals respectively, relative gene expression is defined as the log ratio

M = log2
R
G

. For microarray data table each cell represents the measured Cy5/Cy3

fluorescence ratio (M value or R
G

value) at the corresponding target element [31]

obtained from the gene under that experimental condition. All R
G

values are log

transformed (base 2 for simplicity) to treat inductions or repressions of identical

magnitude but with opposite sign.

In the oligonucleotide arrays [66], each gene or EST is represented by multiple

probes of length 20 bp. These probes are synthesized base by base and are placed in

hundreds of thousands of different positions on a glass plate, using photolithography.

As in the cDNA microarray RNA from experimental samples is hybridized with

a reference sample (probe). The arrays are then scanned and the quantitative

flourescence image along with the known position of the probes is used to asses

whether a gene or EST is present and its abundance. In the oligonucleotide arrays

the flourescence image is an absolute measure of the abundance of mRNA of a

sample.

1.5 Drawbacks of Microarray Technology

Microarray technology is a very powerful tool for molecular biology, but it has cer-

tain drawbacks that limit the effectiveness of microarray experiments. First, biolog-

ical variations, artifacts of preparing samples for analysis, inconsistencies of array

chip printing, all contribute to low signal-to-noise ratio in microarray technology,

which frequently results in inconsistent results. The limitations can be minimized

by performing replicate experiments and using analysis methods that can take into

account the estimated noise of the system. Another issue is that, measurements

9

of mRNA levels can not be used as a direct indicator of corresponding protein ac-

tivity due to complicated multi-step post-translational modifications. Although it

limits the interpretation of microarray results, it is still possible to use changes in

expression levels as downstream indicators of biological processes of the cell.

Correct functional assignments of gene and other related annotations are also

of great importance for analysis and interpretation of results of microarray data.

Improper probe annotations can be a result of various uncertainties. Mismatches of

clones from cDNA libraries used for spotted microarray construction can produce a

significant amount of error in identification of these probes. Therefore, availability

of the most recent annotation information is crucial for the correct analysis of gene

expression data.

1.6 Tasks Involved in the Analysis of Gene Ex-

pression Data

Computational methods involving gene expression microarray data play a major

role in attempts to discover gene’s functions, pathways and networks from vari-

ous observations. Many unanswered and important questions could potentially be

answered by correctly selecting, assembling, analyzing, and interpreting microar-

ray data. Functional and pathway relation among genes, whose protein sequence

similarity is negligible, can be discovered through microarray by measuring the ex-

pression levels of thousands of genes at the same time. Inferring a genes function

from gene expression data obtained by DNA microarray is considered as one of the

most challenging problems in the field of bioinfomatics [1].

Prior to microarray data analysis, several pre-processing steps are required.

First, scanned images are quantified to determine the signal intensity of each spot.

This is usually done by a software specially designed for a specific microarray plat-

form on which the experiment was performed. Second, normalization of microarray

data is performed to remove dye-related differences between two channels (Cy5 and

Cy3) and various slide-specific artifacts that can exist between different microar-

ray. After pre-processing, the normalized microarray data can be analyzed using

statistical and pattern recognition methods like clustering, ordering, classification

etc. The different tasks related with microarray data analysis are missing value

10

prediction, normalization, clustering, ordering, and interpretation of results. In

the subsequent sections, we will discuss about various pre-processing and analyz-

ing methods for microarray in brief and missing value prediction using LSimpute,

between-slide normalization, average linkage, k-means, and self-organizing map in

details, as they are used for analysis and comparison with our proposed methods in

different chapters of the thesis.

1.6.1 Missing Value Prediction

Estimating missing values is a classical problem in statistics, and iterative algo-

rithms based on the EM algorithm are widely used. An implementation of the EM

algorithm for missing value estimation is described by Johnson and Wichern [53].

Microarray experiments generate data sets with information on the expression levels

of thousands of genes in a set of biological samples. Unfortunately, such experiments

often produce multiple missing expression values, normally due to various exper-

imental problems. Typical problems include spotting problems, scratches on the

slide, dust or hybridization failures. This in turn results in values missing from

the gene expression matrix. Thus in every microarray related investigation, one

needs to determine how to treat missing values. Repeating the experiment is often

not a realistic option, for economic reasons or because of limitations in available

biological material. The data produced by microarray experiments can be ana-

lyzed by various methods in order to visualize the information inherent in the data.

Analysis results obtained using clustering algorithms, such as hierarchical cluster-

ing, K-means clustering and self-organizing maps, or data dimension reduction and

projection methods such as singular value decomposition or principal component

analysis, will be influenced by the estimates replacing the missing values [8]. Thus

it is desirable to have accurate estimates of the missing values to get results from

the analysis methods that are as realistic as possible.

Some methods for estimation of missing values in microarray data sets are pre-

sented in [8]. The methods, based on the least squares principle, are available in a

software package called LSimpute and utilize correlations between both genes and

arrays. In LSimpute software, two basic methods based on least squares principle,

one utilizing correlations between genes (LSimpute gene) and the other utilizing cor-

relations between arrays (LSimpute array), are used to estimate missing values. A

11

robust method for using weighted averages of the estimates from LSimpute gene and

LSimpute array into adaptive estimates is also available in LSimpute. The superior

missing value estimation accuracy of LSimpute, as compared to KNNimpute [110],

is also demonstrated with the widely used microarray data sets by randomly knock-

ing out data (labeling as missing). Additionally, a more classic approach to missing

value estimation based on expectation maximization (EM) is also examined in [8].

The results indicate that on average, the estimates from best performing LSimpute

method are at least as accurate as those from the best EMimpute algorithm.

1.6.2 Normalization

To identify relationship among genes, involved in multiple biological functions or

processes, many microarray experiments with different biological origins are con-

ducted. These experiments with multiple microarray slides are sources of non-

biological variation between slides such as dye biases, sample preparation or hy-

bridization differences, scanner calibrations, slide printing variations, volume of

initial RNA, etc. Some of these variabilities can be corrected by data normalization

before analysis of the data. The main assumption behind normalization of microar-

ray data is that most of the genes on the slide do not change their expression levels

and the numbers of up- and down-regulated genes on the array are roughly equal.

Most methods try to adjust expression levels of the genes such that the overall

average expression remains the same across different arrays. Additional steps in

normalization can be performed by removing saturated signals from microarray,

background correction, low expression genes correction, etc. In cDNA microarray

related investigations, many different methods are developed in order to compen-

sate for dye-effects and other non-biological variations between arrays. The existing

normalization methods for microarray data are broadly classified in the following

groups [127]:

1. Within-slide normalization: Normalization in specific location

• Global normalization

• Intensity dependent normalization

• Within-print-tip-group normalization

2. Within-slide normalization: Normalization with slide dependent scaling factor

12

• Median absolute deviation (MAD)

• Variance regularization [84]

3. Paired-slides normalization (dye-swap)

4. Between-slide or Multiple-slide normalization

• Median absolute deviation (MAD)

• Variance regularization [84]

Global normalization methods assume that the red and green intensities are related

by a constant factor k (that is, R = k ·G). Generally the center of the distribution of

log-ratios is shifted to zero by subtracting the median or mean of the log-ratios for a

particular gene. Global normalization approaches also include rank invariant meth-

ods but do not take into account the spatial or intensity dependent die biases. On

the other hand, LOWESS (locally weighted scatter plot smooth), a locally weighted

linear regression method [25] accounts for such effects and has been proven to be

a robust, powerful normalization method for correcting intensity-dependent ratio

bias in different types of two color (R and G) microarray experiments [127]. Lowess

is used for microarray data with separate R and G value for each experimental

condition. For microarray datasets with given ratio values (log2
R
G

), it is assumed

that intensity-dependent ratio bias is corrected by the data providers [101]. Within-

print-tip-group normalization accounts for differences in the length, opening, and

deformation of the tips, used for printing grids in a microarray. After this nor-

malization all the normalized log-ratios from the different print-tip-groups will be

centered around zero. However, there is a possibility that the log-ratios from the

various print-tip-groups have different spread and there are substantial scale dif-

ferences between them, because of changes in the photomultiplier tube settings of

the scanner or for other reasons. In these circumstances within-slide scale normal-

ization is required. Scale-normalization is a simple scaling of the log-ratios from

a series of arrays and the scaling factor is estimated using median absolute devia-

tion (MAD) or variance of log-ratios for individual print-tip-groups. Similar type

of scale normalization, using MAD and variance, is performed in between-slide or

multiple-slide normalization when, log-ratios from the various slides (experiments)

have different spread. Here, we will discuss how scale normalization is performed

using MAD or variance.

13

Let us assume that there are m different types of experiments (or slides or

print-tip-groups), experiment type i (eg., sporulation) has a total of ni (where,

i = 1, 2, · · ·m) no. of log ratios, and Seti denotes the total set of log ratios for

experiment i. The scaling factor S MADi for experiment of type i, in terms of

median absolute deviation (MAD), is defined as [127]

S MADi =
MADi

m
√∏m

i=1 MADi

, (1.1)

where, MADi is defined as

MADi = median{|Seti − median(Seti)|}. (1.2)

After the calculation of scaling factors, all the gene expression values (log-ratios)

for experiment of type i are normalized (divided) by S MADi. This normalization

procedure assumes that a relatively small proportion of the genes will vary signifi-

cantly in expression between the two mRNA samples. In addition, it assumes that

the spread of the distribution of the log-ratios should be roughly the same for all

experiments (or slides or print-tip-groups) [127].

Similarly, for variance regularization, the scaling factor S V ariancei for experi-

ment of type i is defined as [84]

S variancei =
σ2

i

m
√∏m

i=1 σ2
i

, (1.3)

where, σ2
i is defined as

σ2
i =

1

ni

ni∑
j=1

(Mij − Seti)
2. (1.4)

In Eq. 1.4 Mij indicates the jth log ratio in Seti and Seti is the mean log ratio of

Seti.

Paired-slides normalization applies to dye-swap experiments where, two hy-

bridizations are performed for two mRNA samples and the dye assignment is re-

versed in the second hybridization [127]. A good evaluation of new normalization

methods and their comparisons are available in [124] and [127], respectively.

14

A different approach is required to normalize the affymetrix arrays, that use only

one channel to measure abundance of mRNA levels. Several methods are developed

in this regard. The default method, for minimizing biological and technical vari-

ations in GeneChip expression microarray, uses a constant scaling factor (SF), for

every gene on an array. The SF is obtained from a trimmed average signal of the ar-

ray after excluding the 2% of the probe sets with the highest and the lowest values.

Lu [68] showed that normalization factors, obtained with log transformed signals,

performed the best and suggested to use the mean of the logarithm transformed

data for normalization, rather than the arithmetic mean of signals. In general, the

various normalization methods used in affymetrix arrays are natural extensions of

cDNA methodologies.

1.6.3 Clustering Methods

Cells react to different internal and external environmental conditions with a re-

sponse that results in activating a set of proteins required to use or oppose these

conditions. Conditions can be of various kinds of samples, e.g. different treatments,

time points, patients, etc. Within a particular experimental condition, genes whose

products function together are usually co-regulated, involved in the same cellu-

lar processes, and coordinately expressed in response to stimuli. This expression

property is used to identify genes that share similar expression profiles.

Clustering is commonly used in microarray experiments to identify groups of

genes that share similar expressions [31]. Each group is then associated with a

specific biological function or biological process. Therefore, clustering suggests

functional relationships between groups of genes. It may also help in identifying

promoter sequence elements that are shared among genes. In addition, clustering

can be used to analyze the effects of specific changes in experimental conditions

and may reveal the full cellular responses triggered by those conditions. There are

many widely used clustering algorithms for analysis of microarray data, including

hierarchical clustering [2, 31, 51, 54], CLICK (CLuster Identification via Connec-

tivity Kernels) [101], k-means [49], and self-organizing map [109]. These methods

differ from each other considerably and often lead to different results, even within

the same method when using different distance metric as a measure of similarity

between genes.

15

Although various clustering methods can usefully organize tables of gene expres-

sion measurements, the resulting massive collection of numbers remains difficult to

assimilate. Therefore, for visual interpretation and evaluation of the clustering

results, clustering methods are combined with a graphical representation of the

primary data by representing each data point with a color that quantitatively and

qualitatively reflects the original experimental observations [31]. Data points with

log ratios of 0 are colored black, increasingly positive log ratios with reds of increas-

ing intensity, and increasingly negative log ratios with greens of increasing intensity.

The end product is a representation of complex gene expression data (see Figure

1.4) that, through statistical organization and graphical display, allows biologists

to assimilate and explore the data in a natural intuitive manner.

Average linkage hierarchical clustering is one of the first clustering algorithms

applied to microarray data [22, 31]. Using a distance metric, the method builds

a hierarchical binary tree (called a dendrogram). Given a set of N data points

to be clustered, and an N × N distance (or similarity) matrix, the basic steps of

hierarchical clustering [54] are explained below.

S1) Start by assigning each item to a cluster, so that if there are N items there

are N clusters, each containing just one item. So, the distances (similarities)

between the clusters are the same as the distances (similarities) between the

items they contain.

S2) Find the closest (most similar) pair of clusters and merge them into a single

cluster, so that there is one less cluster.

S3) Compute distances (similarities) between the new cluster and each of the old

clusters.

S4) Repeat S2 and S3 until all items are clustered into a single cluster of size N.

The data points are thus fashioned into a binary tree whose branch lengths

represent the degree of similarity between the sets. Once the complete hierarchical

tree is computed, the tree can be cut at some branch according to a threshold

value to obtain clusters of required characteristics. To get k clusters one has to

cut the k-1 longest links. Step 3 can be done in different ways, which is what

distinguishes single-linkage from complete-linkage and average-linkage clustering.

Figure 1.4 shows the average linkage clustering of genes and conditions related with

16

Figure 1.4: Average linkage clustering of genes and conditions related with DNA
microarray gene expression of Herpes virus [51]. The dendrogram at the left repre-
sents the relatedness of the patterns of gene expression. The three major clusters
are color coded according to the class of genes they represent and the times at
which expression is first detected: primary lytic genes (0 to 10 h), secondary lytic
genes (10 to 24 h), and tertiary lytic genes (48 to 72 h). Each column represents
a condition taken at different times in hours after TPA induction (labelled above).
The dendrogram at the top relates the conditions according to the pattern of gene
expression.

17

DNA microarray gene expression of Herpes virus [51]. The genes are ordered using

a self-organizing map algorithm [31, 51]. The normalized log expression ratio is

color coded according to the scale at the bottom. ORFs (Open Reading Frames)

and corresponding gene names are listed on the right and color coded according to

putative function shown by the key above.

Figure 1.5: Computation of distance (d(r, s)) between clusters in single linkage clus-
tering. Here the distance between every possible object pair (xri,xsj) is computed,
where object xri is in cluster r and object xsj is in cluster s. The minimum value of
these distances is said to be the distance between clusters r and s. In other words,
the distance between two clusters is given by the value of the shortest link between
the clusters. At each stage of clustering, the clusters r and s , for which d(r, s) is
minimum, are merged.

Figure 1.6: Computation of distance (d(r, s)) between clusters in average linkage
clustering. Here the distance between two clusters is defined as the average of
distances between all pairs of objects, where each pair (xri,xsj) is made up of one
object from each group. Object xri is in cluster r, object xsj is in cluster s, and nr

and ns are sizes of clusters r and s, respectively.

In single-linkage clustering (also called the connectedness or minimum method),

the shortest distance from any member of one cluster to any member of the other

18

Figure 1.7: Computation of distance (d(r, s)) between clusters in complete linkage
clustering. Here the distance between every possible object pair (xri,xsj) is com-
puted, where object xri is in cluster r and object xsj is in cluster s. The maximum
value of these distances is said to be the distance between clusters r and s.

cluster is considered as the distance between one cluster and another cluster (shown

in Fig. 1.5). If the data consist of similarities, the similarity between one cluster

and another cluster is considered to be equal to the highest similarity from any

member of one cluster to any member of the other cluster. In complete-linkage

(also called the diameter or maximum method) and average-linkage clustering, the

distance between one cluster and another cluster is considered to be equal to ‘the

largest distance from any member of one cluster to any member of the other cluster’

(shown in Fig. 1.7) and ‘average distance from any member of one cluster to any

member of the other cluster’ (shown in Fig. 1.6), respectively. A variation on

average-link clustering uses the median distance and is more outlier-proof than

the average distance. This kind of hierarchical clustering is called agglomerative

because it merges clusters iteratively. There is also a divisive hierarchical clustering

which does the reverse by starting with all objects in one cluster and subdividing

them into smaller pieces.

Although, hierarchical clustering is simple and clear for representation, it has

a number of shortcomings for the study of gene expression. First, the determinis-

tic nature of hierarchical clustering can cause points to be grouped based on local

decisions, with no opportunity to reevaluate the clustering. It is known that the

resulting trees can lock in accidental features, reflecting idiosyncrasies of the ag-

glomeration rule [109]. Second, dendrograms and corresponding heatmaps, which

are used for visualization and analysis of the clustering results, suffer from inversion

problems that complicate interpretation of the hierarchy [75]. And finally, complex-

19

ity of dendrograms for larger data sets makes them difficult to understand, and the

choice of location for tree cut to receive final clusters is unclear.

The k-means clustering [49, 71] is one of the simplest partitive unsupervised

algorithms that partitions the data into k clusters. The main idea is to define k

centroids, one for each cluster. These centroids should be initially placed as far

as possible from each other. The next step is to assign each data point to the

nearest centroid. When all the points are so assigned then k new centroids are re-

calculated from the data points of each cluster. The whole process is repeated until

no more changes are observed in the locations of all the k centroids. The algorithm

is composed of the following steps:

S1) Place k points into the space represented by the data points that are being

clustered. These k points represent initial group centroids.

S2) Assign each data point to the group that has the closest centroid.

S3) When all data points have been assigned, recalculate the positions of the k

centroids.

S4) Repeat S2 and S3 until the centroids no longer move. This produces a sepa-

ration of the data points into groups from which the objective function, to be

minimized, can be calculated using

J =
k∑

j=1

nj∑
i=1

||x(j)
i − cj||

2
(1.5)

where, nj is the number of data points assigned to jth cluster and ||x(j)
i − cj||

2

is an indicator of the distance between a data point x
(j)
i and the cluster center

cj with a chosen distance measure.

While simplicity and speed are the main advantages of the k-means, the disadvan-

tage is that the method proceeds in an entirely local fashion and produces an unor-

ganized collection of clusters that is not conducive for interpretation of microarray

data [109]. Although it can be proved that the k-means will always terminate, the

algorithm does not necessarily find the most optimal configuration, corresponding

to the global minimum of the objective function. The algorithm is also significantly

sensitive to the initial randomly selected cluster centers and can be run multiple

20

Competitive
Layer

N x N
Grid

Unit 1 Unit 2 Unit n

. . . Input Layer

Figure 1.8: The basic network structure for the SOM.

times to reduce this effect. Another obstacle is to estimate the number of clus-

ters prior to analysis of the data. Several approaches to minimize this obstacle are

available in [13].

Self-Organizing Maps (SOMs) [59] are suited to exploratory data analysis, allow-

ing one to impose partial structure on the clusters (in contrast to the rigid structure

of hierarchical clustering and the non-structure of k-means clustering) and facili-

tating easy visualization and interpretation of gene expression patterns [109].

In SOM, k-dimensional data points are randomly projected into an initial map

(usually one- or two-dimensional) of nodes, represented by k-dimensional weight

vectors. The feature map is a two-layered network. The first layer of the network is

the input layer. The second layer, called the competitive layer, is usually organized

as a two-dimensional grid of nodes. All interconnections go from the first layer to

the second (see Fig. 1.8). In the second layer, each node has two components.

The first part is its weight vector which is of the same dimensions as the input

vectors. The second part of a node is its natural location in the map. At each

iteration of the algorithm an input vector is chosen randomly, and all the nodes in

the competitive layer compare the inputs with their weights and compete with each

other to become the winning node having the lowest difference.The best-matching

weight vector with the shortest distance or highest similarity is the winner node. It

has a location, neighboring nodes that are close to it, and been updated the most

compared to more distant neighboring nodes.

21

(x c , y
c

)

Figure 1.9: Neighborhood Nc, centered on unit c (xc, yc). Three different neighbor-
hoods are shown at distance d = 1, 2, and 3.

In biophysically inspired neural network models, correlated learning by spatially

neighboring cells can be implemented using various kinds of lateral feedback connec-

tions and other lateral interactions. Here the lateral interaction is enforced directly

in a general form, for arbitrary underlying network structures, by defining a neigh-

borhood set Nc around the winner node c. The weight vectors of the winner node

and its neighbors are updated in the direction of the input vector and depending

on learning rate (α) and similarity/distance between a node and that input vector.

There are two parts in updating the winner and its neighbors: determining which

nodes are considered as neighbors and how much each node can learn to become

more like the input vector. In the first part, the neighborhood set can be deter-

mined using a number of different methods, such as, concentric squares, hexagons,

and gaussian function where, every point with a value above zero is considered a

neighbor. The number of neighbors are also decreased over time by decreasing the

width or radius of Nc , so that, input vectors can first move to an area where they

will probably be and then they compete for position. In fact, for good global order-

ing, it has experimentally turned out to be advantageous to let Nc be very wide in

the beginning and shrink monotonically with time (shown in Fig. 1.9). This process

is similar to coarse adjustment followed by fine tuning and allows the topological

order of the map to be formed.

The second part involves the learning process of the nodes. At each learning

step, all the nodes within Nc are updated, whereas nodes outside Nc are left intact.

22

The update equation is:

Δmij =

{
α(xj − mij) if unit i is in the neighborhood Nc,

0 otherwise,
(1.6)

and

mnew
ij = mold

ij + Δmij (1.7)

Here α is the learning rate. This adjustment results in both the winning node

and its neighbors, having their weights modified, becoming more like the input

pattern. The winner then becomes more likely to win the competition should the

same or a similar input pattern be presented subsequently. An attribute of this

learning process is that, the farther away the neighbor is from the winner node, the

less it learns. The rate at which a node can learn decreases with iteration and can

also be set to a user defined value. Using a Gaussian function the learning rate will

return a value ranging between 0 and 1.

The next step is to self-organize a two-dimensional map that reflects the distribu-

tion of input patterns. After a number of iterations involving the above mentioned

processes, nodes represent clusters with self-organized neighbor nodes in the map

defining related clusters. The algorithm is composed of the following steps:

S1) Initialize the k-dimensional weight vector of each node in a one- or two-

dimensional map.

S2) Randomly select a k-dimensional input vector and search the map of nodes

(weight vectors) to find that which best represents that input vector.

S3) Introduce two new user defined variables, the neighborhood set (Nc) for the

winner node and the learning rate (α).

S4) Update the weight vector of the winner node according to the learning rate

(g), so that it becomes more similar to the randomly selected input vector. If

the current g value is set to a maximum (i.e. to 100%) then the winner node

is actually made to be exactly the same as the selected input vector.

S5) Update the weight vectors of the neighboring nodes within neighborhood set

(Nc), so that, they become more like the randomly selected input vector in

S2.

23

S6) Decrease learning rate and neighborhood set.

S7) Repeat S2 to S6 for more than 1000 iterations.

SOM can also yield different decompositions of the data depending on the choice

of initial geometries of nodes, such as maps, rings, and lines, with different numbers

of nodes. Although SOMs are easy to implement, reasonably fast, and scalable to

large data sets, sensitivity of SOM to incomplete data is a problem which can only

be tackled with missing value imputation methods [8].

The clustering results of SOM and K-means are not unique across different runs

and depend on starting positions of centroids or nodes. These algorithms also need

a prior assumption on the number of clusters or their structure. To overcome these

issues CLICK is proposed in [101]. The algorithm recursively partitions a weighted

graph into components using minimum cut computations. The edge weights and the

stopping criterion of the recursion are assigned probabilistic meaning, which gives

the algorithm higher accuracy than the related methods like hierarchical clustering

and self organizing maps. CLICK is also used in the identification of common

regulatory motifs in the promoters of co-regulated genes, and in the classification

of samples into disease types based on their expression profiles.

The clustering methods, discussed so far, are used to relate one gene to a single

co-expression cluster, when many individual genes are involved in more than one

process [30, 38] of the cell and therefore co-express in multiple groups. Some at-

tempts [42] are made to relate genes with multiple biological processes using fuzzy

k-mean clustering that allows the genes to belong to more than one cluster, with a

variable degree of ‘membership’. Each gene has a total membership of 1.0 that is

apportioned to clusters on the basis of the similarity between the gene’s expression

pattern and that of each cluster centroid. Importantly, genes can be assigned signif-

icant memberships to more than one cluster, thus revealing genes whose expression

is similar to multiple, distinct groups of genes.

1.6.4 Ordering Methods

Hierarchical clustering is one of the most popular methods for clustering gene ex-

pression data. The method assembles input elements into a single tree, and subtrees

represent different clusters. Thus, using hierarchical clustering one can analyze and

24

visualize relationships in scales that range from large groups (clusters) to single

genes. However, hierarchical clustering does not provide decisions about clusters,

making it hard to distinguish between internal nodes that are roots of a cluster

and nodes which only hold subsets of a cluster [14]. Therefore, the leaves of the

binary tree, computed from hierarchical clustering, are usually ordered in a lin-

ear fashion, so that genes or groups of genes with similar expression patterns are

adjacent [14,31]. The ordered leaves can then be displayed graphically with a repre-

sentation of the tree to identify the clusters and to indicate the relationships among

genes and subclusters (see Figure 1.4). So in the framework of hierarchical cluster-

ing a gene ordering algorithm helps the user to identify clusters by means of visual

display and interpret the data [14]. For hierarchical clustering based approaches, as

well as outside the framework of hierarchical clustering, microarray gene ordering

(MGO) using gene expression information is necessary for the following reasons:

1. Gene ordering helps to identify clusters and subclusters by means of smooth

visual display of the ordered gene expression data [14], where the functionally

related genes are nearer in the ordering [18].

2. It is believed that genes are influenced on an average by no more than eight

to ten other genes [26]. Such a relation can be achieved by gene ordering,

which enables molecular biologists concentrate on a sensible subset of genes

and infer genetic networks [29].

3. Genes that are adjacent in a linear ordering are often functionally co-regulated

and involved in the same cellular process [18, 31]. Biological analysis is often

done in the context of this linear ordering [14].

The problem of ordering the leaves of a binary hierarchical clustering tree dates

back (1972) to the investigation of Gruvaeus and Wainer [47]. Over the years,

many different heuristics have been suggested for solving this problem [31, 39, 47].

These heuristics either use a local method, where decisions are made based on

local observations, or a global method, where an external criteria is used to order

the leaves. Eisen et. al [31] used a simple method for ordering leaves (genes) in a

hierarchical clustering solution. They used the procedure of weighting genes, such as

average expression level, time of maximal induction, or chromosomal position, and

placed the element with the lower average weight earlier in the final ordering [31].

25

Figure 1.10: Change in the leaf ordering due to an internal node flip [14]. Different
orderings are obtained by flipping the two subtrees rooted at the circled node while,
maintaining the same tree structure. Since there are n− 1 internal nodes there are
2n−1 possible orderings of the tree leaves.

However, the ordering of the leaves, which plays an important role in analyzing and

visualizing hierarchical clustering results, is not defined in [31].

An optimal leaf ordering method in hierarchical clustering framework is demon-

strated in [14]. The method maximizes the similarity of adjacent genes in the

ordering by flipping the internal nodes in a hierarchical solution. First, the optimal

leaf ordering problem is formalized and then the related algorithm [14] is described.

For a tree T with n leaves, denote by z1, · · · , zn the leaves of T , and by v1, · · · , vn−1

the n − 1 internal nodes of T . A linear ordering consistent with T is defined to

be an ordering of the leaves of T generated by flipping internal nodes in T (that

is, changing the order between the two subtrees rooted at vi, for any vi ε T). See

Figure 1.10 for an example of node flipping. For any tree (dendrogram) of n genes,

there are 2n−1 linear orderings consistent with the structure of the tree. The goal

is to find an ordering of the tree leaves that maximizes the sum of the similarities

of adjacent leaves in the ordering. This could be stated mathematically in the fol-

lowing way. Denote by Φ the space of the 2n−1 possible orderings of the tree leaves.

For φ ∈ Φ, Dφ(T) is defined as:

Dφ(T) =
n−1∑
i=1

S(zφi
, zφi+1

) (1.8)

where, zφi
is the ith leaf when T is ordered according to φ and S(zφi

, zφi+1
) is the

similarity between two leaves of the tree. Thus, the goal is to find an ordering φ

that maximize Dφ(T). For such an ordering, D(T) = Dφ(T).

Assume that a hierarchical clustering in form of a tree T has been fixed. The

basic idea is to create a table M with the following meaning. For any node v of T ,

26

Figure 1.11: A binary tree rooted at node v. For every pair of leaves iεW and jεX
the optimal leaf ordering, M(v, i, j), is computed when the leftmost leaf of W is i
and the rightmost leaf of X is j

and any two genes i and j that are at leaves in the subtree defined by v (denoted

T (v)), define M(v, i, j) to be the cost of the best linear order of the leaves in T (v)

that begins with i and ends with j. M(v, i, j) is defined only if node v is the least

common ancestor of leaves i and j; otherwise no such ordering is possible. If v is a

leaf, then M(v, i, j) = 0. Otherwise, M(v, i, j) can be computed as [14]:

M(v, i, j) = max
h∈T (w),l∈T (x)

M(w, i, h) + S(h, l) + M(x, l, j) (1.9)

where, w is the left child and x is the right child of v (see Figure 1.11).

Outside the framework of hierarchical clustering, unidirectional Microarray Gene

Ordering (MGO) can be performed for identifying highly correlated genes. The or-

dering acts as an alternative method for clustering and can be formulated with

some minor modifications in the Travelling Salesman Problem (TSP), one of the

most important test-beds for new combinatorial optimization methods [61]. Beidl

et al. [18] formulated the MGO problem as TSP by associating one imaginary city

to each gene, and obtaining the distance between any two genes (cities) from the

matrix of inter gene distances. Consequently, the MGO problem as TSP is solved

using Genetic Algorithm (GA), an effective technique in finding near optimal so-

lutions in short computational time for large combinatorial optimization problems.

The importance of GA and TSP stems from the fact there is a plethora of fields

in which it finds applications e.g., shop floor control (scheduling), distribution of

goods and services (vehicle routing), product design (VLSI layout), protein struc-

ture prediction, and DNA fragment assembly. Definition of TSP, its relevance in

27

MGO problem, and relevant investigations using GA in this regard are available

in Chapter 2 and [18, 91, 115]. The application of gene ordering and its utility in

partitive clustering is investigated in Chapter 3. In brief, gene ordering helps to

determine which of the gene groups are unique and which groups are only a part of

a bigger group by means of visual inspection of the ordered gene expression data.

1.6.5 Methods for Combining Multi-Source Information with

Microarray Data

One of the important goals of biological investigation is to predict the function and

pathway of unclassified gene. Even in a model organism like Yeast, there are more

than 1000 genes with unknown biological function defined in Munich Information for

Protein Sequences (MIPS) [38] and Saccharomyces Genome Database (SGD) [30].

An approach in predicting function or pathway of unclassified gene involves identi-

fying the group of its closest classified genes and assigning the common biological

function or pathway of the group to the unclassified gene, using different sources of

information, such as microarray gene expressions [31, 109], protein sequences [73],

protein-protein interaction data [95,97], and phenotypic profiles [20]. Among these

heterogeneous functional data sources, gene expressions or phenotypic profiles are

relatively new sources for gene function prediction, but they alone often lack the

degree of specificity needed for accurate prediction. This lack of specificity is due

to the drawbacks of microarray technology (as mentioned in Section 1.5), and it

can be overcomed through the incorporation of heterogeneous functional data in

an integrated analysis [111]. The working hypothesis is that each set of functional

genomics data has an intrinsic error rate and a limited coverage but informs us

to some extent about the tendency for genes to operate in the same cellular func-

tions and pathways in the cell. Therefore a more accurate and extensive functional

predictions can be achieved by integrating the information from multiple functional

genomics datasets, and in this manner the overall functional coupling between genes

across a broad set of experiments can be estimated [62].

The value of combining multi-source information with microarray data, for gene

function prediction, is first illustrated in [73]. Consequently, related methods and

algorithms are developed in [74], [111], [106], [126], and [62]. All the methods have

a unified scoring scheme, based on gene annotation, for testing the heterogeneous

28

data sets, even when the data sets are accompanied by their own intrinsic scoring

method (such as Pearson correlation for gene expression). This re-scoring by a

single criterion allows one to directly measure the relative merit of each data set,

and then to integrate the data sets. A brief description of different methods of

integration are available in Chapter 5. Here we will describe the method of Lee et

al. [62], as we have used it for comparison with our method in Chapter 5.

In [62], different sets of microarray data are analyzed for significant co-expression

of pairs of genes, and pairs from the assortment of different microarray data sets are

collected to generate a single set. These expression-based pairs are then integrated

with other protein-protein interaction experiments, literature mining pairs, and

gene context pairs to produce the initial integrated network. A Bayesian statistics

approach is used for scoring different data sets, where, each data set adds some

degree of evidence that a pair of genes is functionally linked. More specifically, the

odds ratio, representing the likelihood that a pair of genes is functionally linked, is

calculated. If P (L|E) represents the probability of linkage between a pair of genes

conditioned on the given evidence (and ∼ P (L|E) represents the probability that

these genes are not functionally linked), and P (L) is the unconditional probability

of linkage between a pair of genes, the odds ratio (OR) that the given pair of genes

is linked is given as [62]:

OR(L, E) =
P (L|E)/ ∼ P (L|E)

P (L)/ ∼ P (L)
(1.10)

In Bayesian terms, the ratio P (L)/ ∼ P (L) represents the prior odds ratio, which

is the ratio of the probability of the linkage and its negation before the evidence

is seen. This term is estimated by counting the number of gene pairs with any

shared functional annotation (using only a single source of functional annotation,

for example, the Kyoto Encyclopedia of Genes and Genomes (KEGG) [55] pathway

annotation) and those without any shared functional annotation among all possible

gene pairs chosen from the set of annotated yeast genes. The ratio P (L|E)/ ∼
P (L|E) represents the posterior odds ratio, which is the ratio of the probability of

the linkage and its negation conditioned on the given evidence. For estimating these

conditional odds, the number of gene pairs that share or do not share functional

annotation and that are also supported by the given evidence are counted. The

OR(L, E) can therefore be interpreted as the ‘likelihood of the linkage conditioned

29

on the given evidence and corrected for background expectations of pairs. The

methodology for calculating OR(L, E) for each data set, is as follows:

S1) Sort all possible gene pairs by its own intrinsic scoring method and make bins,

each containing 20,000 gene pairs.

S2) For each bin, measure frequencies of genes sharing (P (L|E)) or not sharing

(∼ P (L|E)) pathways/processes, based on KEGG or Gene Ontology (GO)

process 8th level annotation.

S3) Plot curves for ’average intrinsic score of bin (20,000 gene pairs)’ vs. P (L|E)

and ’average intrinsic score of bin’ vs. ∼ P (L|E).

S4) Compute OR(L, E) for each bin (i.e., for all gene pairs) from these curves

and the odds ratio of prior expectations, P (L) and ∼ P (L).

Now calculate the natural logarithm of OR(L, E), the log likelihood ratio, in order

to create an additive score from different ln(OR(L, E)), available from different

data sets. The ultimate score for each gene pair is based upon a weighted sum

of ln(OR(L, E)) scores. For data sets that provide only binary evidence (e.g.,

observed to interact or not observed to interact), all linkages (observed to interact)

derived from the same data set are scored with an identical ln(OR(L, E)) value

calculated as the log of the odds ratio described above. Other data sets provide

gene pairs with associated parametric scores, such as the correlation coefficients

indicating the degree of mRNA co-expression, the probability scores of genes being

linked by gene fusions or co-citation, and the mutual information score indicating

the degree of coinheritance of genes in phylogenetic profiling [80].

1.6.6 Statistical methods

Statistical tests are necessary to infer the significance of biological findings or ad-

vantages of a computational method over related methods. Some of the widely used

and popular statistical methods for microarray analysis are Students t-test, Mann-

Whitney-Wilcoxon rank test, analysis of variance (ANOVA) and significance analy-

sis of gene clusters with p-values. Students t-test is a hypothesis test for answering

questions about the mean between two sets of data where the data are a random

sample of independent observations from an underlying normal distribution [46].

30

In Chapter 4 t-test is used to test the alternative hypothesis, that the average

of ‘percentages of improvement over the lowest biological score’ for the proposed

(Maxrange-M) distance is better than the related one (Pearson or Euclidean) [89].

ANOVA compares group variations to the overall variation observed by using Fish-

ers F-distribution as part of the test of statistical significance [57]. Variations of

ANOVA analysis include one-way and factorial or non-parametric ANOVA, that

are used depending on experimental design or hypothesis testing [24, 79]. Mann-

Whitney-Wilcoxon rank test is a non-parametric statistical test that compares for

each gene the difference between measurements in two groups. The biological sig-

nificance of any clusters generated by a clustering methods can be evaluated with

a p-value, using biological functional categories of the genes. The p-value gives

the probability of observing at least m genes from a functional category within a

cluster of size n when, the total number of genes within that functional category

and the total number of genes within the genome are available. If a p-value is

found statistically significant then the related functional category is assigned to

that cluster.

1.6.7 Gene Annotations

Microarray data analysis is a very demanding task involving multiple steps of data

pre-processing, missing value prediction, normalization, filtering, data mining, and

interpretation of results. Many steps of the process can be enhanced by additional

biological knowledge about the genes being analyzed. Gene annotation [7, 30, 38]

information is one of the most important biological knowledge that is currently

used for validation of clustering and classification results or expression patterns

recovered by data analysis. Most of the gene annotation informations are in the

form of genes grouped by the biological function, process, component or sub-cellular

location [7, 30, 38]. Result interpretation steps can also be enhanced by a broad

variety of annotation information about genes under study, including pathways,

transcription factors, chromosomal location, etc.

Gene filtering is a pre-processing step that removes genes that do not vary over

experimental conditions or do not have specific expression profile determined by

the nature of the experiment. In this step annotations of the genes are used to

identify and remove them. In some normalization techniques housekeeping or other

31

constitutively expressed genes are first identified with gene annotation information

and then instead of using all genes on the array for normalization of data, the

smaller subset of housekeeping genes are used, which are believed to have con-

stant expression across a variety of conditions [127]. In a missing value prediction

method [117], genes, whose annotations are related to same biological processes, are

first grouped together and then the missing expression values are predicted from

the existing expression values of the group. For supervised algorithms like sup-

port vector machines (SVM) [21] and neural networks [58], gene annotations can be

used to form training sets from genes of specific functional class. In the validation

process, the algorithms take advantage of already known annotation informations.

Comprehensive and structured annotations for all genes are also essential for path-

way prediction and function prediction of unclassified genes from biological datasets

like phenotypic profiles [20], protein sequences [73], Kyoto Encyclopedia of Genes

and Genomes (KEGG) pathway database [55], protein-protein interactions [95,97],

phylogenetic profiles [80] and Rosetta Stone sequences [72].

1.7 Scope of the Thesis

A central step in the analysis of gene expression data is the identification of groups

of genes that exhibit similar expression patterns. Clustering and ordering the genes,

using gene expression data, into homogeneous groups was shown to be useful in func-

tional annotation, tissue classification, regulatory motif identification, and other ap-

plications. Again, based on the surveys [77,85] on bioinformatics, genetic algorithm

(GAs) [77,87] and artificial neural networks (ANNs) are found to be promising tools

for optimization and classification/categorization tasks in the current state of art.

In order to classify microarray data, an appropriate measure is also needed to find

the similarity between genes in terms of their expression values.

The present thesis deals with the development of novel computational methods

in bioinformatics for ordering and clustering of genes from microarray data, defining

new distance measures for genes using an microarray experiment specific normaliza-

tion factor, and developing new scoring framework for predicting the function of a

few unclassified Yeast genes by integrating microarray gene expressions with other

informative data sources. Both GAs and deterministic computational methods are

used as tools. Superiority of the methods is established on the accuracy of gene

32

ordering, grouping functionally similar genes, and predicting the biological function

of genes. The results of these investigations are summarized below on the basis of

different chapter headings.

1.7.1 Gene Ordering in Genetic Algorithm (GA) Frame-

work [88,91]

Some new operators of genetic algorithms and their effectiveness to the travelling

salesman problem (TSP) and microarray gene ordering is demonstrated in Chapter

2. The new operators developed are nearest fragment operator based on the concept

of nearest neighbor heuristic, and a modified version of order crossover operator.

While these result in faster convergence of GA in finding the optimal order of genes

in microarray and cities in TSP, the nearest fragment operator can augment the

search space quickly and thus obtain much better results compared to other heuris-

tics. The genetic algorithm with the new operators is referred as FRAG GALK.

Appropriate number of fragments for the nearest fragment operator and appropri-

ate substring length in terms of the number of cities/genes for the modified order

crossover operators are determined systematically. Gene order provided by the pro-

posed method is seen to be superior to other related methods based on GAs, neural

networks and clustering in terms of biological scores computed using categorization

of the genes.

1.7.2 Integrating Gene Ordering with Partitive Clustering

[86,90]

Chapter 3 deals with a new hybrid method for ordering genes in each of the clusters

obtained from partitive clustering solution, using microarray gene expressions. Two

existing algorithms for optimally ordering cities in TSP, namely, FRAG GALK and

Concorde, are hybridized individually with Self Organizing MAP to show the im-

portance of gene ordering in partitive clustering framework. Our hybrid approach

is validated using Yeast and Fibroblast data and it is shown that our approach im-

proves the result quality of partitive clustering solution, by identifying subclusters

within big clusters, grouping functionally correlated genes within clusters, minimiza-

tion of summation of gene expression distances, and the maximization of biological

gene ordering using MIPS categorization. Moreover, the new hybrid approach, finds

33

comparable or sometimes superior biological gene order in less computation time

than those obtained by optimal leaf ordering in hierarchical clustering solution.

1.7.3 New Distance Measure for Microarray Gene Expres-

sions using Linear Dynamic Range of Photo Multi-

plier Tube [89,92]

Chapter 4 deals with a new distance measure for genes using their microarray

expressions. The distance measure is called, “Maxrange distance”, where an ex-

periment specific normalization factor is incorporated in the computation of the

distance. The normalization factor is dependent on the linear dynamic range of

the photo multiplier tube (PMT) for scanning fluorescence intensities of the gene

expression values. Superiority of this distance measure in the microarray gene or-

dering problem has been extensively established on widely studied microarray data

sets by performing statistical tests.

1.7.4 Adaptively Combining Multi-Source Information with

Microarray Data [93,94]

A new scoring framework for predicting the function of a few unclassified Yeast

genes is developed in Chapter 5. The score, called Biological Score (BS), is com-

puted by first evaluating the similarities between genes, arising from different data

sources, in a common framework, and then integrating them in a linear combi-

nation style through weights. We use microarray gene expressions, phenotypic

profiles, KEGG pathway information, protein similarity through transitive homo-

logues, and protein-protein interactions as data sources. The relative weight of each

data source, in the score, is determined adaptively by utilizing the information on

functional annotations (super GO-Slim) of classified genes, available from Saccha-

romyces Genome Database (SGD). Genes are grouped by a method, called K-BS,

where, for each gene, a cluster comprising that gene and its K nearest neighbors

is computed using the proposed score (BS) and evaluated with MIPS annotation.

We predict the functional categories of 417 classified genes from 417 clusters with

98.20% accuracy. The method is then used to predict the functional categories of

12 unclassified Yeast genes.

34

1.8 Conclusions and Scope for Future Research

The concluding remarks with further scope for research are presented in Chapter 6.

Chapter 2

Genetic Operators for

Combinatorial Optimization in

TSP and Microarray Gene

Ordering

2.1 Introduction

In Section 1.6.4 it is mentioned that outside the framework of hierarchical clustering,

unidirectional Microarray Gene Ordering (MGO) can be performed for identifying

highly correlated genes. First, a notion of distance needs to be defined in order to

measure similarity among genes using gene expression values and then the genes

can be ordered using it. Expression similarity between genes can be measured in

terms of Euclidean distance, Pearson correlation, absolute correlation, Spearman

rank correlation, etc. In order to determine the functional relationships between

groups of genes that are often co-regulated and involved in the same cellular process,

gene ordering is necessary. Gene ordering provides a sequence of genes such that

those that are functionally related are closer to each other in the ordering [18].

The utility of gene ordering is discussed in detail in Section 1.6.4. A good solution

of the microarray gene ordering (MGO) problem (i.e., finding optimal order of

large DNA microarray gene expression data) has similar genes grouped together.

The ordering problem can be formulated with some minor modifications in the

Travelling Salesman Problem (TSP), one of the most important test-beds for new

35

36

combinatorial optimization methods [61] which has been addressed extensively by

mathematicians and computer scientists. Beidl et al. [18] formulated the MGO

problem as TSP by associating one imaginary city to each gene, and obtaining the

distance between any two genes (cities) from the matrix of inter gene distances.

Consequently, the MGO problem as TSP is solved using Genetic Algorithm (GA),

an effective technique in finding near optimal solutions in short computational time

for large combinatorial optimization problems. Since the TSP has proved to belong

to the class of NP-hard problems [41], heuristics and metaheuristics occupy an

important place in the methods so far developed to provide practical solutions for

large instances and any problem belonging to the NP-class can be formulated with

TSP. The classical formulation is stated as: Given a finite set of cities and the cost

of traveling from city i to city j, if a traveling salesman were to visit each city

exactly once and then return to the home city, find the tour that would incur the

minimum cost.

Over decades, researchers have suggested a multitude of heuristic algorithms,

such as genetic algorithms (GAs) [45, 52, 87, 112], tabu search [36, 128], neural net-

works [9, 82], and ant colonies [108] for solving TSP. Of particular interest are the

GAs, due to the effectiveness achieved by this class of techniques in finding near

optimal solutions in short computational time for large combinatorial optimization

problems. The state-of-the-art techniques for solving TSP with GA incorporates

various local search heuristics including modified versions of Lin-Kernighan (LK)

heuristic [6,40,48,65]. It has been found that, hybridization of local search heuristics

with GA for solving TSP leads to better performance, in general. Some important

considerations in integrating GAs and Lin-Kernighan heuristic, selection of a proper

representation strategy, creation of the initial population, and designing of various

genetic operators are discussed in [114]. A comprehensive discussion regarding dif-

ferent representation strategies for TSP is provided in [61].

For creating the initial population, random population based approach and near-

est neighbor tour construction heuristic (NN) approach are commonly used. Some

considerations regarding the random population based approach are available in [52]

and [87]. A GA with immunity (IGA) is developed in [52]. It is based on the theory

of immunity in biology, which mainly constructs an immune operator accomplished

in two steps: a) a vaccination and b) an immune selection. Strategies and meth-

37

ods of selecting vaccines and constructing an immune operator are also mentioned

in [52]. IGA can improve the searching ability and adaptability of TSP. Two op-

erators of GA, namely, knowledge based multiple inversion (KBMI) and knowledge

based neighborhood swapping (KBNS) are reported in [87]. KBMI helps in explor-

ing the search space efficiently and prevents the GA from getting stuck in the local

optima, whereas KBNS, a deterministic operator, helps the stochastic environment

of the working of the GA to derive an extra boost in the positive direction. The

corresponding GA for solving TSP is referred to as SWAP GATSP [87].

Nearest neighbor (NN) tour construction heuristic is a common choice to con-

struct the initial population of chromosome for solving TSP with GAs. Investi-

gations in this line include [17, 53, 96, 112]. In [112] a modified multiple-searching

genetic algorithm (MMGA) is used with two kinds of chromosomes namely, conser-

vative and explorer. These two chromosomes operate under different crossover and

mutation rates for tour improvement and to avoid the possibility of being trapped

at local optima in TSP. Since the NN heuristic takes a locally greedy decision at

each step, it is found that several cities that were neglected earlier, may need to be

inserted at high costs in the end. This leads to severe mistakes in path construction.

Crossover operators of GAs are seen to rectify the mistakes in path construction

by NN or any other approach. Various crossover operators such as order crossover

[28], cycle crossover [76], partially matched crossover [45], edge-recombination cross-

over [107, 122], and matrix crossover [50] have been suggested for the TSP. Order

crossover has been observed to be one of the best in terms of quality and speed,

and yet is simple to implement for solving TSP using GA [45, 61, 87]. However,

the random length of a substring, chosen from the parent string for performing

crossover, may increase the computational time to some extent.

The present investigation has three parts. First, we define a new nearest frag-

ment operator (NF) and a modified version of order crossover operator (viz., modi-

fied order crossover, MOC). The NF reduces the limitation of NN heuristic in path

construction. This reduction is achieved by determining optimum number of frag-

ments in terms of the number of cities and then greedily reconnecting them. The

nearest fragment operator also takes care of the neighbor genes, not the distant

ones, for MGO and provides good results without ignoring any long distances be-

tween genes for fitness evaluation. The modified version of order crossover operator

38

(MOC) handles the indefinite computational time due to random length of sub-

string and its random insertion in order crossover. This is done by systematically

determining an appropriate substring length from the parent chromosome for per-

forming crossover. While the position of the substring in the parent chromosome

is chosen randomly, the length of the substring is predetermined. In the second

part of the investigation, the effectiveness of the new operators for solving TSP

is established. Finally, in the third part the microarray gene ordering problem is

considered. Comparison of the proposed genetic operators is carried out with other

techniques based on GAs, neural networks and clustering in terms of a biological

score.

In Section 2.2 we provide, in brief, a formal definition of TSP and relevance

of TSP in microarray gene ordering. The different components of GAs along with

their implementation for solving TSP are discussed in Section 2.3. New operators

such as NF and MOC, and the algorithm based on them for TSP and gene ordering

are described in Section 2.4. In Section 2.5 the results obtained with our algorithm

for different TSP instances and microarray data sets are presented. Section 2.6

concludes the investigation. The new operators and some of the results presented

in this chapter have been reported in [88,91].

2.2 TSP Definition and Relevance in Microarray

Gene Ordering

Investigations for clustering and then ordering gene expression profiles include hi-

erarchical clustering [14, 18, 31], self-organizing maps (SOM) [31] and evolutionary

algorithms [26]. It is mentioned in Section 1.6.4 that, outside the framework of clus-

tering, the TSP, with some minor modifications, can be used to model the microar-

ray gene ordering (MGO) problem. Beidl et al. [18] formulated the MGO problem

as TSP using GA and Tsai et al. [115] applied family competition GA (FCGA) for

solving it. They associated one imaginary city to each gene, and obtain the dis-

tance between any two cities (genes) from the matrix of inter gene distances. For

microarray gene ordering it is necessary to minimize the distance between the genes

that are in the neighborhood of each other, not the distant genes. However, Tsai

et al. tried to minimize the distance between distant genes as well [64, 113]. This

39

problem for TSP formulation in microarray gene ordering using GA is minimized

in NNGA [64], where relatively long distances between genes are ignored for fitness

evaluation.

Let {1, 2, · · · , n} be the labels of the n cities and C = [ci,j] be an n × n cost

matrix where ci,j denotes the cost of traveling from city i to city j. The Traveling

Salesman Problem (TSP) is the problem of finding the shortest closed route among

n cities, having as input the complete distance matrix among all cities. The total

cost A of a TSP tour is given by

A(n) =
n−1∑
i=1

Ci,i+1 + Cn,1 (2.1)

The objective is to find a permutation of the n cities, which has minimum cost.

A unidirectional optimal gene order, a minimum sum of distances between pairs

of adjacent genes in a linear ordering 1, 2, · · · , n, can be formulated as [18]

F (n) =
n−1∑
i=1

Ci,i+1, (2.2)

where n is the number of genes and Ci,i+1 is the distance between two genes i and

i+1. The formula (Eqn. 2.2) for optimal gene ordering is the same as used in TSP,

except the distance from the last gene to first gene, which is omitted, as the tour

is not a circular one. In this study, the Euclidean distance is used to specify the

distance Ci,i+1.

Let X = x1, x2, · · · , xk and Y = y1, y2, · · · , yk be the expression levels of the

two genes X and Y in terms of log-transformed microarray gene expression data

obtained over a series of k experiments. The Euclidean distance between X and Y

is

EX,Y =
√

{x1 − y1}2 + {x2 − y2}2 + · · · + {xk − yk}2. (2.3)

One can thus construct a matrix of inter-gene distances, which serves as a

knowledge-base for mining gene order using GA. Using this matrix one can calculate

the total distance between adjacent genes and find that permutation of genes for

which the total distance is minimized. This is analogous to the traveling salesman

problem. One can simply associate one imaginary city to each gene, and obtain the

40

distance between any two cities (genes) from the matrix of inter gene distances. The

formula (Eqn. 2.2) for optimal gene ordering is the same as used in TSP, except

the distance from the last gene to first gene, which is omitted, as the tour is not a

circular one.

2.3 Genetic Algorithms for Solving TSP and MGO

Genetic algorithms (GAs) [45] are randomized search and optimization techniques

guided by the principles of evolution and natural genetics, and have a large amount

of implicit parallelism. GAs perform multimodal search in complex landscapes and

provide near optimal solutions for objective or fitness function of an optimization

problem. In GAs, the parameters of the search space are encoded in the form of

strings (chromosomes). A collection of such strings is called a population. Initially

a random population is created, which represents different points in the search

space. Based on the principle of survival of the fittest, a few among them are

selected and each is assigned a number of copies that go into the mating pool.

Biologically inspired operators like mating, crossover, and mutation are applied on

these strings to yield a new generation of strings. The process of selection, crossover

and mutation continues for a fixed number of generations or until a termination

condition is satisfied. A general description of Genetic Algorithm is presented in

this section for solving TSP using elitist model. Roughly, a genetic algorithm works

as follows (see Figure 2.1):

2.3.1 Chromosome Representation and Nearest-Neighbor

Heuristic

Various representation methods are used to solve the TSP problem using GA. Some

of these are binary representation, path representation, matrix representation, ad-

jacency representation, ordinal representation [61]. In order to find the shortest

tour for a given set of n cities using GAs, the path representation is more natural

for TSP [61]. We have used this representation in our proposed GA. In path repre-

sentation, the chromosome (or, string) corresponding to a TSP tour is an array of

n integers which is a permutation of (1, 2, · · · · · · , n), where an entry i in position

j indicates that city i is visited in the jth time instant. The objective is to find a

string with minimum cost.

41

begin

while generation_count < dok

/* k = max. number of generations. */

begin

Increment generation_count
end
Output the best individual found

end

GA

Create initial population

Selection and Elitism
Produce children by crossover from

Mutate the individuals

GA

 -selected parents

Figure 2.1: The Pseudo-code of Genetic Algorithm (GA)

For solving TSP, the nearest neighbor tour construction heuristic is a common

choice to construct the initial population for its O(n2) time complexity. The sales-

man starts at some random city and then visits the city nearest to the starting city.

From there he visits the nearest city that was not visited so far, until all the cities

are visited, and the salesman returns to the starting city. The NN tours have the

advantage that they only contain a few severe mistakes, while there are long seg-

ments connecting nodes with short edges. Therefore such tours can serve as good

starting tours for subsequent refinement using other sophisticated search methods.

In NN the main disadvantage is that, several cities are not considered during the

course of the algorithm and have to be inserted at high costs in the end. This leads

to severe mistakes in path construction. To overcome the disadvantages of the NN

heuristics, we propose a new heuristic operator, called the Nearest Fragment (NF)

operator (discussed in Section 2.4.1). However, unlike NN heuristic that is used

only for constructing the initial population, NF is used in every generation (itera-

tion) of GA with a predefined probability for every chromosome in the population

as a subsequent tour improvement method.

42

2.3.2 Selection and Elitism

A number of different selection implementations have been proposed in the literature

[45], such as roulette wheel selection, tournament selection, linear normalization

selection. Here linear normalization selection, which has a high selection pressure

[45], has been implemented. In linear normalization selection, an individual is

ranked according to its fitness, and then it is allowed to generate a number of

offspring proportional to its rank position. Using the rank position rather than

the actual fitness values avoids problems that occur when fitness values are very

close to each other (in which case no individual would be favored) or when an

extremely fit individual is present in the population (in such a case it would generate

most of the offspring in the next generation). This selection technique pushes the

population toward the solution in a reasonably fast manner, avoiding the risk of a

single individual dominating the population in the space of one or two generations.

A new population is created at each generation (iteration) and after selection

procedure, chromosome with highest fitness (least cost) from the previous genera-

tion replaces randomly a chromosome from this new generation provided fitness of

the fittest chromosome in the previous generation is higher than the best fitness in

this current generation in the elitist model.

2.3.3 Crossover

As the TSP is a permutation problem, it is natural to encode a tour by enumerating

the city indices in order. This approach has been dominant in GAs for solving the

TSP. In such an encoding, the chromosomal location of a city is not fixed, and only

the sequence is meaningful. Some representative crossovers performed on order-

based encodings include cycle crossover [76], partially matched crossover [45] and

order crossover [28, 45]. Order crossover has been found to be one of the best

in terms of quality and speed [61], and yet is simple to implement. Below order

crossover is described briefly.

Order Crossover (OC): The order crossover operator [28, 45] selects at random

a substring in one of the parent tours, and the order of the cities in the selected

positions of this parent is imposed on the other parent to produce one child. The

other child is generated in an analogous manner for the other parent. As an example

43

consider two parents A and B, and a substring in A of length 3, selected randomly,

as shown [45].

A = 1 2 3 |5 6 7| 4 8 9 0

and

B = 8 7 1 |2 3 0| 9 5 4 6

The cities in the selected substring in A (here, 5, 6, and 7) are first replaced by

* in the receptor B.

A = 1 2 3 |5 6 7| 4 8 9 0

and

B = 8 ∗ 1 |2 3 0| 9 ∗ 4 ∗
Now to preserve the relative order in the receiver, a sliding motion is made to

leave the holes in the matching section marked in the receiver. The convention

followed in [45] is to start this sliding motion in the second crossover site, so after

the rearrangement we have

A = 1 2 3 |5 6 7| 4 8 9 0

and

B = 2 3 0 | ∗ ∗ ∗ | 9 4 8 1

After that, the stars are replaced with the city names taken from the donor A

resulting in the offspring B1

B1 = 2 3 0 |5 6 7| 9 4 8 1

Similarly the complementary crossover from B to A yields

A1 = 5 6 7 |2 3 0| 4 8 9 1

In order crossover (OC) the length of the substring for crossover (chosen from

the parent string) is random and may often be significantly large; this can have an

adverse impact on the computational time. This uncertainty is tackled with a small

and predefined length of substring, obtained after extensive empirical studies, for

crossover (discussed in Section 2.4.2).

2.3.4 Mutation

For TSP, the simple inversion mutation (SIM) is one of the leading performers [61].

Here simple inversion mutation (SIM) is performed on each string probabilistically

as follows: Select randomly two cut points in the string, and reverse the substring

between these two cut points. For example consider the tour

(1 2 |3 4 5| 6 7 8)

44

and suppose that the first cut point is chosen randomly between 2nd city and

3rd city, and the second cut point between the 5th city and the 6th city as shown.

Then the resulting string will be

C = (1 2 |5 4 3| 6 7 8)

2.4 New Operators of GAs

In this section, some new operators of GAs for solving TSP and microarray gene or-

dering are described. These are nearest fragment (NF) and modified order crossover

(MOC). The genetic algorithm designed using these operators is referred to as

FRAG GA. The structure of the proposed FRAG GA is provided in Figure 2.2.

begin FRAG_GA

Create initial population with Nearest-Neighbor Heuristic

while generation_count < dok

/* k = max. number of generations. */

begin

Apply NF heuristic or (NF and LK) heuristic

Increment generation_count

end

Output the best individual found

end FRAG_GA

Elitism
Linear Normalized Selection
MOC
Mutation

Figure 2.2: The Pseudo-code for FRAG GA

The basic steps of the FRAG GA are as follows:

S1) Create the string representation (chromosome of GA) for a TSP tour (an array

of n integers), which is a permutation of 1, 2, · · · · · · , n, with Nearest-Neighbor

heuristic. Repeat this step to form the population of GA.

S2) Apply NF heuristic on each chromosome probabilistically.

45

S3) Upgrade each chromosome to local optimal solution using chained LK heuris-

tic probabilistically. (If S3 is used in the GA we denote it as FRAG GALK

and otherwise as FRAG GA.).

S4) Evaluate the fitness of the entire population and use elitism so that the fittest

string among the child population and the parent population is passed into

the child population.

S5) Apply linear normalized selection procedure by using the evaluated fitness of

entire population.

S6) Distribute the chromosomes randomly and apply Modified Order Crossover

operator between two consecutive chromosomes probabilistically.

S7) Apply simple inversion mutation (SIM) on each string probabilistically.

S8) Increment the generation count of GA and if it is less than the maximum

number of generations (predefined) then repeat the steps from S2 to S6.

Local search heuristics, such as 2-swap, 2-opt [53], 3-opt [53], and Lin-Kernighan

(LK) heuristic [6, 48, 65, 114], have been extensively applied in GAs for solving

TSPs. These techniques exchange some edges of parents to generate new children.

Usually, stronger local search methods correspond to better performing GAs. The

mechanisms by which these methods add and preserve edges vary. 2-swap arbitrarily

changes two cities at a time, removing four edges at random and adding four edges

at random. 2-opt, 3-opt and LK exchange edges if the generated solution is better

than the original one. In each iteration, 2-opt and 3-opt exchange two and three

edges respectively, while, LK exchanges a variable number of edges. In the present

investigation Concorde version of chained-LK [5] is used for fair comparison with

[114]. In the following sections, the new operators NF and MOC are described in

details.

2.4.1 Nearest Fragment Heuristic (NF)

In this process, each string (chromosome in GA) is randomly sliced in frag frag-

ments. The value of frag is determined by FRAG GA in terms of the total no. of

cities/genes (n) for a particular TSP instance (or microarray data). The systematic

46

process of determining frag is described later in this section. As an example, let

us consider a string P that is sliced into three random fragments (1-8), (9-14) and

(15-20) for a 20-city problem.

P = 1 2 3 4 5 6 7 8 |9 10 11 12 13 14| 15 16 17 18 19 20

For tour construction the first fragment (9-14) is chosen randomly. From the

last city of that fragment (14) the nearest city that is either a start or an end

point of a not yet visited tour fragment is determined from the cost matrix. In

this example, let the nearest city (among 1, 8, 15 and 20) be 20. The fragment

containing the nearest city is connected to the selected fragment, with or without

inversion depending on whether the nearest city is the last city of a fragment or

not respectively. In this example , the fragment 15-20 is inverted and connected to

fragment 9-14, resulting in the following partial tour P1.

P1 = 9 10 11 12 13 14 |20 19 18 17 16 15

The process is repeated until all fragments have been reconnected. From the

last city (15) of P1 the nearest city from unvisited fragment (1-8) is say 1. From

this result the final string P2, shown below, is formed.

P2 = 9 10 11 12 13 14 20 19 18 17 16 15 1 2 3 4 5 6 7 8

The basic steps of choosing frag value systematically for a TSP instance with n

cities are :

S1) Set frag value to fragmin.

S2) Run FRAG GA with the selected frag value for x generations and store the

number of times the best tour cost is decreased from one generation to the

next for that frag value. Denote the stored values by Decrcost.

S3) Increase frag by amount Δfrag.

S3) Repeat S2 to S3 until frag <= fragmax

S4) Find θ consecutive frag values for which the summation of corresponding

Decrcost values is maximum.

S5) The best frag value is set to the average of the selected five consecutive frag

values.

47

S6) Repeat S1 to S5 ten times and the average of the best frag values is fixed as

the final frag value for NF for a particular TSP instance.

In this study we have used fragmin = n
16

, fragmax = n
2
, x = n

10
, Δfrag = n

50
,

and θ = 5, though experiments were conducted for a few other values as well

with similar results. The value of fragmax is not set to n as this will lead to NN

heuristic. Also, the crossover operator was disabled. The motivation for setting the

initial frag value to a low one (and consequently fragment lengths are larger) and

then increasing it is that, first exploring the distant neighbors reduces the chances

of locking at a local optimal tour for the GA. The probabilistic use of NF also helps

to come out from local optimal solution by leaving some chromosomes for mutation

and crossover operators to explore.

As an example, consider a 100 city problem with frag = n
16

, and consequently

the fragment length is 16 on an average. As the initial population of the FRAG GA

is formed with NN heuristic there is a likelihood that a city at one end of a fragment

is close to the 16th neighbor of the similar end of the next/previous fragment and

consequently, they may be connected by the NF heuristic. In the later generations

of the GA, using n
16

fragments in NN heuristic, explores on an average, from any

city to the 16th city in the chromosome rather than the 16th neighbor. Due to

random slicing of the chromosome, some fragment lengths will be obviously greater

than 16 and some less than 16, and consequently different types of neighbors will

be considered. The lowest frag value is set to n
16

from the studies in [6], where it

is mentioned that good/optimal results are obtained for most of the TSP instances

in the TSP library [116] with a search space near about 16 neighbors. The more

distant neighbors are mostly explored with mutation and crossover operators.

2.4.2 Modified Order Crossover (MOC)

As already mentioned, in order crossover the length of a substring is chosen ran-

domly and can lead to an increase in the computational time, this uncertainty can

be minimized if the length of the substring for performing crossover can be fixed to

a small value. However, no study has been reported in the literature for determin-

ing an appropriate value of the length of a substring for performing order crossover.

Such an attempt is made in this article for finding a small substring length for MOC

that provides good results for TSP/microarray data with the lowest computational

48

cost.

Unlike order crossover, where the substring length is randomly chosen, in MOC

it is determined automatically by the FRAG GA in a similar way of choosing frag

value in Section 2.4.1. In the process of choosing appropriate substring length,

NF heuristic is also present in FRAG GA with its final frag value. As final frag

value for NF is determined without any crossover operator, it is preferable to start

the process of choosing substring length for MOC initially with a very small value

like n
32

(very close to no MOC) and then increasing it. For example, for a 10 city

problem let the systematically chosen substring length by FRAG GA is 2. Now for

the parents A and B the chromosomes may be as follows

A = 0 9 8 4 |5 6| 7 3 2 1

and

B = 9 5 4 1 |2 3| 0 6 8 7

The cities in the selected substring in A (here, 5 and 6) are first replaced by *

in the receptor B.

B = 9 ∗ 4 1 |2 3| 0 ∗ 8 7

Now to preserve the relative order in the receiver, the convention followed in [45]

is to gather the holes in the second crossover site and insert the substring there.

But this convention leads to loss of information and increases randomness in the

receiver because, after insertion of substring 56 in B neither 5 is nearer to 3, nor 6

is nearer to 0. To reduce this randomness, in MOC the holes are gathered in the

position of the last deleted city (here city 6) of the receiver B.

B = 9 4 1 2 3 0 | ∗ ∗| 8 7

So after substring insertion, B is as follows:

B = 9 4 1 2 3 0 5 6 8 7

Now, at least one edge of the substring is nearer to the next city (city 6 is

nearer to 8 according to chromosome B, and this information is preserved). Same

convention is followed for inserting substring in chromosome A.

2.5 Experimental Results

FRAG GA is implemented in C on Pentium-4 (1.2 GHz) and the results are com-

pared with those obtained using SWAP GATSP [87], MMGA [112], IGA [52],

OX SIM (standard GA with order crossover and simple inversion mutation [61]),

49

MOC SIM (Modified order crossover and SIM), and self organizing map (SOM) [9]

for solving TSP. For fair comparison with the above mentioned methods Lin-

Kernighan (LK) heuristic is not used with FRAG GA, whereas, for comparison with

HeSEA [114] and other LK based methods each chromosome in FRAG GALK is

updated probabilistically with 20 runs of consecutive chained LK and mutation (as

recommended in [114]). Several benchmark TSP instances, for which the compar-

ative study with various recently developed pure genetic algorithms (without LK),

and SOM are available in the literature, are taken from the TSPLIB [116] without

any bias on data sets. These include Grtschels24.tsp, bayg29.tsp, Grtschels48.tsp,

eil51.tsp, St70.tsp, eil76.tsp, kroA100.tsp, d198.tsp, ts225.tsp, pcb442.tsp and rat783.

tsp. For comparative study between HeSEA, FRAG GALK, and other LK based

methods the available TSP instances are lin318, rat783, pr1002, vm1084, pcb1173,

u1432, u2152, pr2392, pcb3038, fnl4461, and usa13509. For biological microarray

gene ordering, Cell Cycle cdc15, Cell Cycle and Yeast Complexes datasets are cho-

sen [120]. The three data sets consists of about 782, 803 and 979 genes respectively,

which are cell cycle regulated in Saccharomyces cerevisiae, with different number of

experiments (24, 59 and 79 respectively) [105]. Each dataset is classified into five

groups termed G1, S, S/G2, G2/M, and M/G1 by Spellman et. al. [105]. Results are

compared with those obtained using GAs [64,113], different versions of hierarchical

clustering [18,31] and self-organizing map (SOM) [109] for solving microarray gene

ordering. Throughout the experiments for FRAG GA, SWAP GATSP, OX SIM,

and MOC SIM the population size is set equal to 100. Crossover probability is

fixed at 0.6 and mutation probability is fixed at 0.02 across the generations. For

FRAG GA and FRAG GALK the probability of applying NF heuristic is fixed at

0.3. Table 2.1 shows the various parameters of different genetic algorithms used in

this current investigation.

Table 2.1: Different parameters of FRAG GA, SWAP GATSP, OX SIM, and
MOC SIM

population NF Probability Crossover Mutation
size for FRAG GA Probability Probability
100 0.3 0.6 0.02

First, we provide results comparing our method (FRAG GA) with other meth-

ods that do not use LK heuristics and then comparisons of results are provided

50

with our method incorporating LK heuristic (FRAG GALK) with other LK based

methods .

2.5.1 Comparison with Other GA Approaches for TSP

Table 2.2: Comparison of the results over 30 runs obtained using FRAG GA,
SWAP GATSP, OX SIM, and MOC SIM for different TSP instances

Problem FRAG GA SWAP GATSP OX SIM MOC SIM
Grtschels24 best 1272 (13) 1272 (50) 1272 (800) 1272 (600)

24 average 1272 (100) 1272 (200) 1322 (1500) 1272 (1500)
1272 error(%) 0.0000 0.0000 3.9308 0.0000

Bayg29 best 1610 (30) 1610 (60) 1620 (1000) 1610 (700)
29 average 1610 (100) 1615 (200) 1690 (1500) 1622 (1500)

1610 error(%) 0.0000 0.3106 4.9689 0.7453
Grtschels48 best 5046 (40) 5046 (200) 5097 (2500) 5057 (1700)

48 average 5054 (150) 5110 (700) 5410 (3000) 5184 (3000)
5046 error(%) 0.1585 1.2683 7.2136 2.7348
eil51 best 426 (45) 439 (220) 493 (2500) 444 (1600)
51 average 432 (150) 442 (700) 540 (3000) 453 (3000)
426 error(%) 1.4085 3.7559 26.7606 6.3380
St70 best 675 (40) 685 (600) 823 (4500) 698 (4500)
70 average 679 (150) 701 (1000) 920 (7500) 748 (7500)
675 error(%) 0.5926 3.8519 36.2963 10.8148
eil76 best 538 (75) 548 (700) 597 (5000) 562 (3800)
76 average 544 (150) 555 (1000) 620 (7500) 580 (7500)
538 error(%) 1.1152 3.1599 15.2416 7.8067

KroA100 best 21282 (80) 21397 (2000) 21746 (10000) 21514 (8200)
100 average 21303 (500) 21740 (3000) 22120 (12000) 21825 (12000)

21282 error(%) 0.0987 2.1521 3.9376 2.5515
d198 best 15780 (850) 15980 (4000) 16542 (10000) 16122 (9000)
198 average 15865 (2000) 16106 (4000) 17987 (16000) 16348 (16000)

15780 error(%) 0.5387 2.0659 13.9861 3.5995
ts225 best 126643 (1000) 127012 (4000) 135265 (10000) 128994 (10000)
225 average 126778 (2000) 128467 (4000) 138192 (16000) 130994 (16000)

126643 error(%) 0.1066 1.4403 9.1193 3.4356
pcb442 best 50778 (1900) 52160 (8000) 53320 (16000) 52852 (13000)

442 average 50950 (4000) 53800 (8000) 56330 (26000) 54173 (26000)
50778 error(%) 0.3387 5.9514 10.9339 6.6860
rat783 best 8850 (7500) 9732 (12000) 10810 (28000) 10155 (20000)
783 average 9030 (16000) 10087 (16000) 11136 (40000) 10528 (40000)
8806 error(%) 2.5437 14.5469 26.4592 19.5548

Table 2.2 summarizes the results obtained over 30 runs by running the FRAG GA,

SWAP GATSP [87], OX SIM and MOC SIM [61] on the aforesaid eleven different

TSP instances. For SWAP GATSP, OX SIM and MOC SIM, the overlapping pa-

51

rameters (Table 2.1) are taken from FRAG GA. For each problem the total number

of cities and the optimal tour cost are mentioned below the problem name in the

first column. The total number of generations in which the best result and the av-

erage result are obtained is mentioned in columns 3-6 within parentheses. The error

percentages are shown in third row for each problem, where the error percentage is

defined as

E =
average − optimal

optimal
× 100. (2.4)

Experimental results (Tables 2.2-2.3) using FRAG GA are found to be superior

in terms of quality of solution (best result, average result and error percentage)

with less number of generations when compared with those of other existing GAs

[52, 61, 87, 112]. It is evident from the table that for different TSP instances the

error percentages are lowest for FRAG GA and the error percentages for MOC SIM

is much less than OX SIM . The average of error percentages over all the TSP

instances for MOC SIM is 5.8425, which is also less than 14.4407 of OX SIM. The

error averages clearly indicates that the modification of order crossover improves

its performance significantly over the existing order crossover which uses random

substring length and its random insertion. The average of error percentages over

all the TSP instances for FRAG GA and SWAP GATSP are 0.6274 and 3.5003

respectively.

Figure 2.3 shows a comparison of FRAG GA, SWAP GATSP and OX SIM when

the fitness value of the fittest string is plotted with iteration. The three programs

were run for 12000 iterations for kroa100.tsp with population 100. At any iteration,

the FRAG GA has the lowest tour cost. It took 15.36 seconds, 19.94 seconds

and 15.14 seconds by FRAG GA, SWAP GATSP and OX SIM respectively for

executing 12000 iterations. Moreover, only FRAG GA is seen to converge at around

250 iterations at the optimal cost value of 21282 km. On the other hand, the cost is

21397 km for SWAP GATSP after 3100 iterations and 21990 km for OX SIM even

after 12000 iterations.

Note that FRAG GA takes almost the same time as OX SIM using one more

operator (NF), but provides better result in less number of paths. It is further to

be pointed out that the NF operator creates an overhead, leading to an increase

in the computation time for FRAG GA, as compared to OX SIM. However, this

is compensated by the gain obtained in using the proposed MOC operator. As a

52

0 2000 4000 6000 8000 10000 12000
2.1

2.15

2.2

2.25

2.3

2.35

2.4

2.45

2.5

2.55
x 10

4

Number of iterations−−−−−>

C
os

t i
n

km
 fo

r
fit

te
st

 c
hr

om
os

om
e−
−
−
−
−
−

>

GA with OX_SIM (15.14 sec.)

SWAP_GATSP (19.94 sec.)

FRAG_GATSP (15.36 sec.)

Figure 2.3: Cost of fittest string Vs. Iteration for kroa100.tsp

consequence, the time required to execute one iteration, on an average, becomes

almost equal for both FRAG GA and OX SIM. Similar observations are also made

when the proposed method is compared with other GAs [61,87] and other methods

like Self Organizing Map (SOM) [9].

Table 2.3: Average results for various GAs
Problem Optimal IGA MMGA SOM FRAG GA

eil51 426 499 446 432 432
st70 675 – – 683 679
eil76 538 611 568 556 544

Kroa100 21282 24921 22154 – 21303
d198 15780 17925 16360 – 15865
ts225 126643 135467 129453 – 126778

pcb442 50778 59380 55660 55133 50950

In Table 2.3 average results of FRAG GA are compared to other GA based

approaches viz., IGA and MMGA (whose results are taken from [112]) and Self

Organizing Map (SOM) [9]. As can be seen from the table, the proposed approach

is again found to consistently outperform IGA, MMGA, and SOM.

53

2.5.2 Comparison with Other LK Based Approaches for

TSP

Table 2.4 summarizes the results obtained over 20 runs by running the FRAG GALK

on different TSP instances mentioned in first column. 20 runs of LK [5] and mu-

tation are applied on randomly chosen 50 chromosomes (among those who are not

operated with NF heuristic) in each generation of FRAG GALK. For HeSEA (with

LK) [114], LKH (Multi-trial LK) [48], iterated LK (ILK) [53], and tabu search with

LK [128] the results are taken from [114]. While FRAG GALK, HeSEA, LKH, and

Table 2.4: Average results for various LK based algorithms
Problem FRAG HeSEA LKH Concorde ILK Tabu

GALK +LK +LK
lin318 error(%) 0.0000 0.0000 0.1085 0.0000 – –
318 generation 2.8 3.2 – – – –

42029 time(sec.) 1.4 2.3 1.4 1.4 – –
rat783 error(%) 0.0000 0.0000 0.0000 0.1761 – –
783 generation 8.0 8.4 – – – –
8806 time(sec.) 5.9 39.1 2.2 5.9 – –

pr1002 error(%) 0.0000 0.0000 0.0000 0.0215 0.1482 0.8794
1002 generation 22.2 12.0 – – – –

259045 time(sec.) 34.6 91.0 7.5 34.6 298.0 1211.4
vm1084 error(%) 0.0000 0.0000 0.0068 0.0172 0.0217 0.3932

1084 generation 23.6 10.2 – – – –
239297 time(sec.) 34.2 80.6 12.6 34.2 377.0 597.0
pcb1173 error(%) 0.0000 0.0000 0.0009 0.0070 0.0088 0.6996

1173 generation 22.5 11.5 – – – –
56892 time(sec.) 38.7 84.5 11.8 39.0 159.0 840.0
u1432 error(%) 0.0000 0.0000 0.0000 0.0153 0.0994 0.4949
1432 generation 22.0 11.0 – – – –

152970 time(sec.) 37.7 107.0 6.9 38.0 224.0 775.0
u2152 error(%) 0.0000 0.0000 0.0495 0.0242 0.1743 0.7517
2152 generation 31.5 17.5 – – – –
64253 time(sec.) 48.3 211.0 135.0 49.0 563.0 1624.0
pr2392 error(%) 0.0000 0.0000 0.0000 0.0294 0.1495 0.6492
2392 generation 25.0 14.5 – – – –

378032 time(sec.) 46.6 208.0 26.2 47.0 452.0 1373.0
pcb3038 error(%) 0.0000 0.0000 0.0068 0.1123 0.1213 0.8708

3038 generation 120.6 29.7 – – – –
137694 time(sec.) 245.0 612.0 226.0 219.0 572.0 1149.0
fnl4461 error(%) 0.0014 0.0005 0.0027 0.0734 0.1358 0.9898
4461 generation 265.0 67.8 – – – –

182566 time(sec.) 519.0 2349.0 528.0 519.0 889.0 1018.0
usa13509 error(%) 0.0061 0.0074 0.0065 0.1201 0.1638 0.8897

13509 generation 1102.5 223.0 – – – –
19982859 time(sec.) 19203.0 34984.0 19573.0 19203.0 10694.0 5852.0

54

concorde chained LK (concorde) [5] are executed on Pentium-4 (1.2 GHz) personal

computer, ILK and tabu search with LK are executed on Silicon Graphics 196 MHz

MIPS R1000 and Pentium III 800 MHz respectively in [114]. For fair compari-

son Concorde chained LK is executed separately for same time as FRAG GALK,

but on average concorde converged to the mentioned solutions (in terms of error)

before the allocated time. The total number of cities and the optimal tour cost

are mentioned below the problem name in the first column. The error percentages

(Equation 2.4) are shown in first row for each problem. The average number of

generations over 20 runs for which the error percentages are obtained is mentioned

in second row for each TSP instance. The third row for each TSP instance shows

the average time in seconds taken by each method. From the table it is clear that

FRAG GALK produces comparable results with HeSEA with same version of LK

in less computational time, whereas the quality of solution of FRAG GALK is bet-

ter than other algorithms with comparable computational time. So FRAG GALK

seems to be a better TSP solver among the existing ones. The time gain obtained

by FRAG GALK over HeSEA is due to probabilistic single run of computationally

effective NF heuristic and MOC over each chromosome in FRAG GALK, whereas,

HeSEA uses 20 runs of edge-assembly crossover between the selected chromosomes

and for all possible combinations of chromosomes with probability 1. Generations

of LKH, ILK, and tabu with LK are not available.

2.5.3 Results for Microarray Gene Ordering

FRAG GA is applied for ordering the genes based on their expression levels obtained

from microarray datasets. Performance of FRAG GA for gene ordering is compared

with other methods based on GAs, clustering and neural networks. GA based

investigations include NNGA [64] and FCGA [113].

As already mentioned, clustering methods can be broadly divided into hier-

archical and nonhierarchical clustering approaches. Hierarchical clustering ap-

proaches [18, 31] group gene expressions into trees of clusters. They start with

singleton sets and keep on merging the closest sets until all the genes form a single

cluster. Complete-linkage and average-linkage belong to this category of clustering

technique, differing only in the way the distance between clusters is defined. Non-

hierarchical clustering approaches separate genes into groups according to the de-

55

gree of similarity (as quantified by Euclidian distances, Pearson correlation) among

genes. The relationships among the genes in a particular cluster generated by

nonhierarchical clustering methods are lost. Self-organizing map (SOM) [109], a

particular class of neural network, performs nonhierarchical clustering.

Table 2.5: Comparison of the results over 30 runs in terms of sum of gene expression
distances for microarray data using various algorithms

Algorithms Cell cycle cdc15 Cell cycle Yeast complexes
Best Average Best Average Best Average

FRAG GA 1272 1278 2349 2362 3382 3396
(1690) (4000) (2320) (4000) (3890) (6000)

Complete-linkage 1419 1419 2534 2534 3634 3634
Average-linkage 1433 1433 2559 2559 3681 3681

SOM 1874 1905 3018 3094 4376 4449
(100000) (100000) (100000) (100000) (200000) (200000)

Table 2.5 summarizes the results in terms of the sum of gene expression distances

(Eqn. 2.2), by executing the FRAG GA, complete linkage, average linkage and SOM

on the three different microarray datasets, described in the first paragraph of Section

2.5. Results (in terms of sum of gene expression distance) and code for NNGA and

FCGA are not available in the literature [64,113]) and hence not provided in Table

2.5. For FRAG GA and SOM, best and average results obtained over 30 runs

are provided, whereas, for complete and average linkage results remain same for

all runs. The genetic parameters for FRAG GA are the same as used before (see

Table 2.1). For FRAG GA and SOM the total number of generations/iterations,

for which the best and average results are obtained are mentioned in columns 2-7

within parentheses. From the table it is clear that FRAG GA produces superior

gene ordering than related methods in terms of sum of the gene expression distances.

A biological score, that is different from the fitness function, is used to evaluate

the final gene ordering. The biological score is defined as [113]

S(n) =
∑n−1

i=1 si,,i+1 where si,,i+1 = 1, if gene i and i + 1 are in the same group

= 0, if gene i and i + 1 are not in the same group

Using this, a gene ordering would have a higher score when more genes within the

same group are aligned next to each other. So higher values of S(n) indicate better

gene ordering. For example consider the genes YML120C, YJR048W, YMR002W

and YDR432W belonging to groups G2/M, S/G2, S/G2 and G2/M respectively.

56

Table 2.6: Comparison of the best results over 30 runs in terms of S(n) values for
microarray data

Algorithms Cell cycle Cell Yeast
cdc15 cycle complexes

FRAG GA 540 635 384
NNGA 539 634 384
FCGA 521 627 −−−

Complete-linkage 498 598 340
Average-linkage 500 581 331

SOM 461 578 306

In the above-mentioned ordering they will return a biological score of 0+1+0=1,

whereas if they are ordered like YJR048W, YMR002W, YDR432W and YML120C

then the score will be 1+0+1=2. The scoring function is therefore seen to reflect

well the order of genes in biological sense. Note that, although S(n) provides a good

quantitative index for gene ordering, using it as the fitness function in GA based

ordering is not practical, since the information about gene categories is unknown

for most of the genes in the real world .

Table 2.6 shows the best results over 30 runs of the above methods in terms

of S(n) value, where larger values are better (S(n) values for NNGA are FCGA

are taken from [64]). It is clear that FRAG GA and NNGA [64] are comparable

and they both dominate others. Note that FRAG GA is a conventional GA, while

NNGA (hybrid GA) is a one using LK heuristic [65]. The main reason for the

good results obtained by FRAG GA is that, biological solutions of microarray gene

ordering lie in more than one sub optimal point (in terms of gene expression dis-

tance) rather than one optimal point and there exists different gene orders with

same biological score.

2.6 Discussion and Conclusions

A new “nearest fragment operator” (NF) and a modified version of order crossover

operators (MOC) of GAs are described along with demonstrating their suitability

for solving both TSP and microarray gene ordering (MGO) problem. A systematic

method for determining the appropriate number of fragments in NF and appropriate

substring length in terms of the number of cities/genes in MOC are also provided.

These newly designed genetic operators showed superior performance on both TSP

57

and gene ordering problem. The said operators are capable of aligning more genes

with the same group next to each other compared to other algorithms, thereby

producing better gene ordering. In fact, in terms of biological score, FRAG GA

produces comparable and sometimes even superior results than NNGA, a GA which

implements Lin-Kernighan local search, for solving MGO problem.

An advantage of FRAG GALK is that the quality of the solution seems to be

more stable than that obtained by LKH and concorde chained LK, when used to

solve the benchmark TSP problems. An evolutionary algorithm for solving com-

binatorial optimization problems should comprise mechanisms for preserving good

edges and inserting new edges into offspring, as well as mechanisms for maintain-

ing the population diversity. In the proposed approach, nearest fragment heuristic,

modified order crossover, and LinKernighan local search preserve good edges and

add new edges. The proposed method can seamlessly integrate NF, MOC, and LK

to improve the overall search.

The present investigation indicates that incorporation of the new operators in

FRAG GA and LK in FRAG GALK yields better results as compared to other pure

GAs, Self Organizing Map, and related LK based TSP solvers. With its superior

results in reasonable computation time FRAG GALK can be considered as one of

the state-of-the-art TSP solvers.

58

Chapter 3

Gene Ordering in Partitive

Clustering using Microarray

Expressions

3.1 Introduction

In Chapter 2, some new operators of genetic algorithm (GA) are developed for

unidirectional microarray gene ordering. The GA with its new operators has been

denoted as FRAG GALK [91] and can be used for solving all the problems where,

Traveling Salesman Problem (TSP) is the key for problem formulation. The present

chapter deals with the tasks of ordering genes, using FRAG GALK, within clusters

obtained from a partitive clustering solution.

A key step in the analysis of microarray gene expression data is the identifica-

tion of groups of genes that manifest similar expression patterns. This translates

to the algorithmic problem of clustering and ordering of gene expression data. A

clustering problem usually consists of elements and a characteristic vector for each

element. A measure of similarity is defined between pairs of such vectors. (In gene

expression, elements are usually genes, the vector of each gene contains its expres-

sion levels under each of the monitored conditions or time points, and similarity can

be measured, for example, by the correlation coefficient between vectors.) While

the goal of clustering in microarray analysis is to partition the genes into subsets,

which are labelled clusters, the goal of gene ordering is discussed in detail in Section

59

60

1.6.4.

Clustering methods can be broadly divided into hierarchical and partitive clus-

tering approaches. Hierarchical clustering approaches (e.g., single, complete and

average linkage) [14, 18, 31, 56] group gene expressions into trees of clusters. Hier-

archical clustering, however, has a number of shortcomings. It has been noted by

statisticians that, hierarchical clustering suffers from lack of robustness, nonunique-

ness, and inversion problems that complicate interpretation of the hierarchy [109].

The deterministic nature of hierarchical clustering can cause points to be grouped

based on local decisions, with no opportunity to reevaluate the clustering. It is

known that the resulting trees can lock in accidental features, reflecting idiosyn-

crasies of the agglomeration rule [109]. Partitive clustering approaches, such as

K-means [49], self-organizing map (SOM) [109], CAST [16], and CLICK [100], sep-

arate genes into groups according to the degree of distance among genes. The

shortcoming of partitive clustering is that, relationships among the genes in a par-

ticular cluster are lost. Integrating gene ordering with partitive clustering is an

approach that is likely to overcome the above problem.

Clustering and ordering the genes into homogeneous groups using gene expres-

sion data has been shown to be useful in functional annotation, tissue classification

and regulatory motif identification. Although there is a rich literature on gene

ordering in hierarchical clustering framework [14, 18, 31], there is no work address-

ing and evaluating the importance of gene ordering for gene expression analysis in

partitive clustering framework, to the best of our knowledge. Partitive clustering

methods determine unique clusters but do not order genes within cluster and the

relationships among the genes in a particular cluster are generally lost. To obtain

this relationship among genes in clusters, we propose a novel hybrid method where

the proposed gene ordering algorithm “FRAG GALK” [91] (described in Chapter

2), is used to order genes in clusters obtained from partitive clustering solutions of

CLICK [100], k-means [49] and Self Organizing MAP (SOM) [109]. For the pur-

pose of comparison of the proposed hybrid method using FRAG GALK with related

methods, an existing Traveling Salesman Problem (TSP) solver Concorde LP [5] us-

ing linear programming, and optimal leaf ordering by [14], are also used to order

genes in a partitive clustering solution and in hierarchical clustering solution, re-

spectively. The utility of the new hybrid algorithm using FRAG GALK is shown in

61

improving the quality of the clusters provided by any partitive clustering algorithm

by,

• identification of subclusters within big clusters,

• grouping functionally correlated genes within clusters,

• the maximization of biological gene ordering using MIPS categorization, and

• using less computation time than those obtained by optimal leaf ordering in

hierarchical clustering solution.

Comparability of the new hybrid algorithms using FRAG GALK as compared

to hybrid algorithms using Concorde LP and B-Joseph’s leaf ordering method are

demonstrated by the biological scores (see Section 3.4) of gene order for four differ-

ent data sets . The new hybrid algorithms using FRAG GALK also requires less

computation time and Random Access Memory (RAM) than original B-Joseph’s

method. Note that, FRAG GALK and Concorde LP can obtain the optimal order

of cities to many TSPLIB instances; the largest having 13,509 and 15,112 cities,

respectively. While FRAG GALK is a Genetic Algorithm [77] based TSP solver,

Concorde LP is a linear programming based TSP solver and much slower than

FRAG GALK. The various steps used in FRAG GALK are available in Chapter 2.

The new hybrid algorithms and some of the results presented in this chapter have

been reported in [86,90].

3.2 Existing Approaches for Gene Expression An-

alysis

3.2.1 Distance Measure

The most popular and probably most simple measures for finding global distance

(or similarity) between genes, using gene expression, are the Euclidean distance

and Pearson correlation, a statistical measure of linear dependence between random

variables.

Let X = x1, x2, · · · , xk and Y = y1, y2, · · · , yk be the expression levels of the two

genes in terms of log-transformed microarray gene expression data obtained over a

62

series of k experiments. While the Euclidean distance between gene X and gene Y

is defined in Section 2.2, using Using Pearson correlation the distance between gene

X and Y can be formulated as

CX,Y = 1 − PX,Y (3.1)

where PX,Y represents the centered Pearson correlation and is defined as

PX,Y =
1

k

k∑
i=1

(
xi − X

σX

)(
yi − Y

σY

)
(3.2)

where X and σX are the mean and standard deviation of the gene X, respec-

tively.

The Pearson correlation has value between -1 and 1, with 1 indicating a linear

relationship between the two vectors. The Manhattan (or Minkowski) distance [60]

between gene X and gene Y is

MX,Y =
k∑

i=1

|xi − yi|. (3.3)

3.2.2 Gene Ordering Methods

Hierarchical clustering does not determine unique clusters. Thus the user has to

determine which of the subtrees are clusters and which subtrees are only a part

of a bigger cluster. So in the framework of hierarchical clustering a gene ordering

algorithm helps the user to identify clusters by means of visual display and to

interpret the data [14]. The importance of gene ordering is discussed in detail in

Section 1.6.4. For partitive clustering based approaches, clusters are identified by

the algorithm automatically and the solutions are robust and not sensible to noise

like hierarchical clustering [109]. However, the relationships among the genes in

a particular cluster generated by partitive clustering algorithms are generally lost.

This relationship (closer or distant) among genes within clusters can be obtained

using gene ordering approaches.

Ideally, one would like to obtain a linear order of all genes that puts similar

genes close to each other; such that for any two consecutive genes the distance

63

between them is small. As mentioned in section 2.2, gene ordering problem is sim-

ilar to the Traveling Salesman Problem [77] where, cities are ordered instead of

genes [18,91,115]. An optimal gene order can be obtained by minimizing the sum-

mation of gene expression distances (or maximizing summation of gene expression

similarities) between pairs of adjacent genes in a linear ordering 1, 2, · · · , n. This

can be formulated as described in Section 2.2.

A hybrid method (first clustering then ordering) for ordering genes for a hierar-

chical clustering solution is proposed in [14] and described in Section 1.6.4. In [26]

the MGO problem is tackled in a memetic algorithm framework where representa-

tions and solutions take some ideas from the hierarchical clustering. The impact of

different fitness function on the solution is also analyzed in [26].

3.3 Materials and Methods

3.3.1 Description of Data Sets

Table 3.1: Summary for different microarray data sets
Dataset No. of genes Category Total experiments

Cell Cycle 652 MIPS 16 184
Yeast Complex 979 MIPS 16 79

All Yeast 6221 MIPS 18 80
Fibroblast 517 GO 1347 18

Herpes 106 GeneBank 5 21

In the present investigation, data sets like Cell Cycle [32], Yeast Complex [14,31],

All Yeast [31,119], Fibroblast [34] and Herpes [51] are chosen. Table 3.1 shows the

name of the data sets, number of genes in each dataset, number of gene categories,

and finally the total number of experiments performed for a particular dataset. A

detailed description of these datasets are available in Section 4.3.2. The genes in the

first three data sets of Saccharomyces cerevisiae are classified according to the top

level classification (hierarchical structure) of Munich Information Center for Protein

Sequences (MIPS) [38] categorization into 16, 16, and 18 groups respectively. Ac-

cording to the Gene Ontology (GO) annotation, the genes in the Fibroblast dataset

are distributed in 1347 categories. Herpes virus genes are broadly assigned to five

64

functional groups that are available in [51], and genes that could not be assigned

to any of these five groups are designated unknown. After downloading, for each

dataset missing gene expression values are predicted with LSimpute [8] (described

in Section 1.6.1) and the order of gene expression vectors is randomized to remove

initial gene order bias in the dataset.

3.3.2 Missing Value Prediction

It is mentioned in Section 1.6.1 that microarray experiments often produce multiple

missing expression values, normally due to various experimental problems. As gene

expression analysis requires a complete data matrix as input, the missing values have

to be estimated in order to analyze the available data. Alternatively, genes with

missing expression values can be removed until no missing values remain. However,

for arrays with only a small number of missing values, it is desirable to estimate

those values. For the subsequent analysis to be as informative as possible, it is

essential that the estimates for the missing gene expression values are accurate [8].

In this thesis, all the genes with more than 50% missing gene expression values are

first eliminated from the dataset. Thereafter, for the remaining genes, the missing

gene expression values are estimated using LSimpute [8] software, described briefly

in Section 1.6.1.

3.3.3 New Hybrid Algorithm for Ordering Genes in Parti-

tive Clustering

A method of ordering genes for a partitive clustering solution is currently missing.

Though gene ordering methods exist (described in Section 1.6.4 and 2.2), the util-

ity and application of these methods to individual clusters of partitive clustering

solution is not reported. An optimal gene order for a partitive clustering solution

can also be obtained by minimizing the the summation of gene expression distances

and we define it as

F1(n) =
k∑

j=1

nj−1∑
i=1

Cj
i,i+1, (3.4)

where k is the total number of clusters, nj is the number of genes in cluster j, and

Cj
i,i+1 is the distance/similarity between two genes i and i + 1 in cluster j obtained

from distance/similarity matrix.

65

Here, we propose new hybrid algorithms using FRAG GALK to improve the

quality of the clusters provided by any partitive clustering algorithm. It is men-

tioned in Section 3.1 that, FRAG GALK is applied separately on each of the gene

clusters found by partitive clustering methods to identify subclusters within large

clusters and to group the functionally correlated genes within clusters. The number

of nodes/clusters of SOM and K-means are chosen according to MIPS categories

(top level of the hierarchical tree) for Yeast data, and available information in [51]

and [100] for Herpes and Fibroblast data respectively. For CLICK, the number of

clusters are automatically determined by the algorithm itself.

3.4 Biological Interpretation

According to gene bank records, the Herpes genes have been classified into five

groups, namely, Homologs of cellular regulatory or signal transduction genes, Virus

gene regulation, DNA replication, DNA repair and nucleotide metabolism, and

Virion formation and structure [51]. In this classification one gene can belong to

only one category. In the case of Cell Cycle, Yeast Complex, and All Yeast the

MIPS (Munich Information for Protein Sequences) [38] categorization is available

for all the three Yeast data sets that allows a gene to belong to more than one

category.

A biological score, that is different from the similarity/distance measure and

defined in Eq. 3.5, is used to evaluate the final gene ordering. Each gene that has

undergone MIPS categorization can belong to one or more categories, while there

are many unclassified genes also (no category). A vector V (g) = (v1, v2, · · · , vj)

is used to represent the category status of each gene g, where j is the number of

categories. The value of vj is 1 if gene g is in the jth category; otherwise is zero.

Based on the information about categorization, the score of a gene order for multiple

class genes is defined as [115]

S(n) =
N−1∑
i=1

G (gi, gi+1) , (3.5)

where N is the number of genes, gi and gi+1 are the adjacent genes and G (gi, gi+1)

is defined as

66

G (gi, gi+1) =

j∑
k=1

V (gi)kV (gi+1)k, (3.6)

where V (gi)k represents the kth entry of vector V (gi). For example consider the

gene order

g1, g2, g3

with 15 categories represented by vectors

V (g1) = (1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)

V (g2) = (1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) and

V (g3) = (0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0)

Then G(g1, g2) = 3 and G(g2, g3) = 1, and

S(n) = G(g1, g2) + G(g2, g3) = 3 + 1 = 4.

Note that, S(n) can be used as scoring function for single class genes also. Using

scoring function S(n), a gene ordering would have a higher score when more genes

within the same group are aligned next to each other. So higher values of S(n) are

better and can be used to evaluate the goodness of a particular gene order.

3.5 Experimental Results

Performance of the proposed FRAG GALK for gene ordering is compared mainly

with Concorde LP [5] and B-Joseph et al.’s [14] method. Experiments of gene

ordering are conducted in Matlab 7 on Sun Fire V 890 (1.2 GHz and 8 GB RAM).

The codes for B-Joseph et al.’s [14] leaf ordering in hierarchical clustering solution

are downloaded from [118]. SOM and K-means are available in Expander [100] and

used with 16, 16, and 18 clusters for clustering Cell Cycle, Yeast Complex, and

All Yeast data sets respectively as genes in these datasets are classified according

to MIPS [38] categorization into 16, 16, and 18 groups. For Fibroblast data SOM

is used with 6 clusters as 6 gene clusters are identified in [100]. Herpes data is

clustered using 5 nodes as there are 5 gene groups [51]. Finally FRAG GALK and

Concorde LP are applied separately on the gene clusters obtained by SOM, and B-

Joseph et al.’s method is applied on the average linkage based hierarchical clustering

solution for each dataset.

67

a) b) c) d)

Figure 3.1: Comparing SOM with ‘SOM+FRAG GALK’ for Fibroblast data (Fig.
a and Fig. b respectively) and Yeast Complex data (Fig. c and Fig. d respec-
tively). The expression profiles are represented as lines of colored boxes using Ex-
pander [100], each of which corresponds to a single experiment. Some grouped genes
obtained by FRAG GALK (Fig. b and Fig. d) have similar expression patterns
and are coexpressed in each group.

3.5.1 Relevance of Gene Ordering in Partitive Clustering

To show the utility of the hybrid method in identifying different subclusters within

big clusters and grouping the functionally correlated genes within clusters, here for

68

illustration, the visual displays are presented for Fibroblast (Fig. 3.1-a and Fig. 3.1-

b), Yeast Complex (Fig. 3.1-c and Fig. 3.1-d) and and Herpes data (Fig. 3.2). As

stated previously, Fibroblast genes are first clustered in 6 clusters using SOM. Visual

display of these 6 clusters is shown in Fig. 3.1-a. Observing this visual pattern no

subcluster can be identified in each cluster. After applying FRAG GALK on each

cluster, closely related genes with similar expressions are aligned next to each other

as shown in Fig. 3.1-b. Gene ordering here suggests that 2 or more subclusters

exists at least in Clusters 1, 4 and 6, and it will be useful to increase the number of

nodes of SOM to at least 9 for Fibroblast data. Note that, Iyer et. al. [34] identified

10 clusters of genes for this data using average linkage.

Yeast Complex data is first clustered in 16 groups using SOM. Visual display

of first 6 clusters/groups is shown in Fig. 3.1-c. When the genes are ordered in

each cluster using FRAG GALK, 4, 4, 5, and 2 distinct subclusters are identified

using visual display in clusters 2, 3, 4, and 5 respectively. Genes names along with

their functional categories (indexes) for each subcluster within first 6 clusters are

shown in Table 3.2 for the purpose of illustration. Names of the functional cate-

gories corresponding to their indexes are shown in Table 3.3. These subclusters of

highly coregulated genes cannot be identified if SOM is used alone. For example,

all the 9 genes in the 3rd subcluster of cluster 4 (YBR010W, YNL031C, YBL003C,

YDR225W, YDR224C, YNL030W, YBR009C, YBL002W and YPL256C) are in-

volved in Cell Cycle and DNA processing, Transcription, and Protein with Binding

Function or Cofactor Requirement. While using SOM these 9 genes are distributed

in the cluster 4, using CLICK these 9 genes are not assigned to any cluster, and are

left as singletons along with 263 other singleton genes, which is undesirable as they

belong to the same biological categories. After ordering genes using FRAG GALK

in cluster 4 of SOM and singleton genes of CLICK they (the 9 genes) are tightly

grouped and identified easily using visual display.

Using CLICK, Herpes data is clustered in 1 group (Fig. 3.2-a) of 101 genes and

5 singleton genes, and no subcluster can be identified within it by visual display.

When the genes are ordered in the cluster using FRAG GALK, some subclusters

are identified using visual display (Fig. 3.2-b), but the display is not conclusive in

identifying exact number of sub-clusters. Using K-means, Herpes data is clustered

with k=5 (5 clusters). Visual display of the first four clusters are shown in Fig.

69

Table 3.2: Gene subclusters found by SOM+FRAG GALK and their functional
category indexes in first 6 clusters identified using SOM for Yeast Complex data

Clu- Sub- Genes Function
ster cluster -al index
1 Nil 100 genes 5
2 1 YGR162W, YBR079C, YMR309C, YOR361C, YNL062C,

YHR021C, YBL092W, YBR143C, YDL136W, YDL191W,
YOR167C, YJL191W

2 YOR224C, YJR063W, YNL113W, YBR154C, YGL120C, 4 and 7
YNL248C, YJL148W, YOR340C, YPR110C

3 YMR146C, YOL139C, YOR276W, YKL156W, YOR182C, 5
YDR447C, YKR094C, YIL148W, YDR500C, YMR121C,
YLR264W, YJL138C, YKR059W, YKL081W, YLR249W

4 YGR159C, YOR207C, YMR239C, YHR089C, YOR310C, 4
YLR197W, YLL008W

3 1 YMR260C, YDR429C, YPL237W, YLR406C, YJR007W, 5
YER025W, YPR041W, YDR172W, YDR211W

2 YDR212W, YIL142W, YPL210C, YKL057C, YPL243W 6 and 7
3 YLR060W, YOR260W, YDL040C, YKR026C, YLR291C, 5

YBR142W, YBL087C, YHL001W, YDR450W, YHL033C,
YBR191W, YBR189W, YBR048W, YBR118W

4 YBR142W, YHR062C, YHR065C, YNR003C, YMR043W, 4
YIL021W, YOR210W, YDR194C, YHR069C

4 1 YLR093C, YNL121C, YLR170C, YML112W, YBR160W, 6
YBR171W, YLR378C, YML019W, YPL234C, YOR039W

2 YKR068C, YLL050C, YGL200C, YML012W, YPL218W, 6 and 9
YKL080W, YDR086C, YNL153C, YKL122C, YLR292C,

YGL112C, YLR268W, YLR447C
3 YBR010W, YNL031C, YBL003C, YDR225W, YDR224C, 3, 4,

YNL030W, YBR009C, YBL002W, YPL256C, and 7
4 YJL025W, YPR101W, YMR061W, YGR195W, YOR244W, 4

YLR105C, YDL043C, YPR056W, YPR057W
5 YGL100W, YNL261W, YKL144C, YNL151C, YJL008C, 7

YER148W
5 1 YML051W, YNL103W, YCR035C, YJL006C, YOL135C, 1 or 4

YDL165W, YOL102C, YMR270C, YOR085W, YJL002C, or
YKL211C (1 and 4)

2 YBR087W, YJR043C, YJL173C, YJR076C, YMR080C, 3 or
YPR029C, YKL045W, YLR103C, YNL262W, YKL113C, (3 and 7)
YLR212C, YER070W, YIL066C, YDR097C, YOL090W, or

YDL102W, YOR250C (1, 3
and 7)

6 Nil 49 genes 3

3.2-c. After ordering the genes in each cluster using FRAG GALK, 3 and 3 distinct

patterns are observed in cluster 1 and 2 respectively (Fig. 3.2-d). From Fig. 3.2-e it

is found that B-Joseph’s method is not very efficient (genes with all red expressions

70

Table 3.3: Indexes and corresponding functional category
Functional index Functional Category

1 Metabolism
2 Energy
3 Cell Cycle and DNA Processing
4 Transcription
5 Protein Synthesis
6 Protein Fate (folding,

modification, destination)
7 Protein with Binding Function

or Cofactor Requirement
8 Protein Activity Regulation
9 Cellular Transport, Transport

Facilitation and Transport Routes
10 Cellular Communication/Signal

Transduction Mechanism
11 Cell Rescue, Defense and Virulence
12 Interaction with Cellular Environment
13 Cell Fate
14 Development (Systemic)
15 Biogenesis of Cellular component
16 Cell Type Differentiation

are scattered through out the visual display) in identifying clusters as partitive

clustering algorithms. On the other hand, hybridizing FRAG GALK with K-means

(Fig. 3.2-c) or SOM (Fig. 3.1-b and 3.1-d) will provide a robust clustering method

as well as relations between genes within clusters. With all these ordered and

clustered genes one can easily zoom in a useful small subset of genes in a cluster

which cannot be done alone with partitive clustering methods. In a similar way,

subclusters within big clusters are identified by Concorde LP for all the data sets.

3.5.2 Comparative Performance of the Algorithms

The ultimate goal of an ordering algorithm is to order the genes in a way that

is biologically meaningful. In this regard, Table 3.4 compares the performance of

our proposed two hybrid approaches using FRAG GALK and Concorde LP with

B-Joseph’s [14] leaf ordering in hierarchical clustering solution in terms of the F1(n)

value (Eq. 3.4), S value (Eq. 3.5), and computation time. For Fibroblast data, no

biological score can be provided as genes in the same biological group for this data

are rare. From the biological scores (Table 3.4), it is evident that FRAG GALK

provides biologically comparable gene order with respect to Concorde LP and some-

71

a) b) c) d) e)

Figure 3.2: Comparing CLICK (Fig. a), ‘CLICK + FRAG GALK’ (Fig. b), K-
means (Fig. c), ‘K-means+FRAG GALK’ (Fig. d), and B-Joseph’s method (Fig.
e) for Herpes data.

times superior gene order than ‘leaf ordering in hierarchical clustering solution’

by [14], for all datasets in least computational time. For example, FRAG GALK

took 125 seconds to order All Yeast data (6221 genes) as compared to Concorde LP

and B-Joseph et. al’s method which took 2272 and 1989 seconds respectively.

72

Table 3.4: Summation of gene expression distances (F1(n)), biological Score (S), and
computation time of ordering in seconds (within parenthesis) for different hybrid
algorithms using SOM

Data Sets
Algorithm Cell Yeast All Herpes

cycle Complex Yeast
442.94 547.16 3446.60 32.55

SOM 354 792 1730 23
301.72 330.54 1919.15 15.52

SOM +FRAG GALK 386 1011 2356 32
(0.7) (1.13) (125) (0.09)

301.72 330.54 1919.15 15.52
SOM +Concorde LP 386 1011 2356 32

(3.41) (15.26) (2272) (0.44)
300.51 330.17 1920.82 15.50

B-Joseph 381 1024 2350 31
(1.8) (3.34) (1989) (0.10)

3.6 Conclusion

A new method called integrating gene ordering with partitive clustering is proposed

in this chapter. Its utility in finding useful subgroups of genes within cluster,

grouping functionally correlated genes within clusters, maximization of biological

gene ordering using MIPS categorization, and minimization of computation time,

are demonstrated for Cell Cycle, Yeast Complex, All Yeast, Fibroblast and Herpes

data sets. The hybrid approach not only determines the unique clusters, but also

preserves the biologically meaningful relationships among the genes within clusters.

In FRAG GALK, parallel searching (with large population in genetic algorithm)

for optimal gene order in gene clusters (closely related genes) is performed. While

this results in reduced searching time for FRAG GALK as compared to Con-

corde LP and B-Joseph’s method, in terms of biological score, FRAG GALK is

comparable with Concorde LP and B-Joseph’s method and sometimes superior to

B-Joseph’s method. It is evident from the experimental results that the combina-

tion of partitive clustering and FRAG GALK is a promising tool for microarray

gene expression analysis.

Chapter 4

New Distance Measure for

Microarray Gene Expressions

using Linear Dynamic Range of

Photo Multiplier Tube

4.1 Introduction

Two new operators of genetic algorithms for gene ordering and a hybrid method

incorporating gene ordering in partitive clustering solution are described in the

previous two chapters, respectively. The present chapter deals with the tasks of de-

veloping a distance measure for genes by normalizing their gene expression values

with linear dynamic range of photo multiplier tube, a new gene ordering algorithm

with less computational complexity then existing ordering algorithms, and evalu-

ating them in gene ordering framework and the hybrid method developed in the

previous chapter. While, pure gene ordering is an existing method [18, 91, 115],

gene ordering in partitive clustering is proposed in [90] and described in Chapter 3.

The widely used measures for finding the global similarity (where all the gene

expression values present in the gene are taken into consideration) between genes

are the Pearson correlation and the Euclidean distance [18, 31, 103]. The Pearson

correlation is over-sensitive to large three fold changes (peaks) in gene expression

profiles, and therefore lead to false interpretation of similarity between genes in

73

74

certain cases. Moreover, in computing the similarity, all the above mentioned mea-

sures do not assign appropriate weights to gene expressions obtained from different

types of experiments, where the expressions differ by orders of magnitude from one

type to another. Consequently, gene expression values in lower dynamic range do

get dominated by those with higher dynamic range. A new similarity measure be-

tween genes, called “Maxrange distance” is defined in this chapter, where local (for

a particular type of experiment) similarities between two genes are first normalized

with a factor dependent on the dynamic range of gene expression values of that

experiment (type) and then summed to find a global distance. Moreover, Manhat-

tan/Euclidean distance is used in the distance measure to avoid the sensitiveness

to large three fold changes in gene expression profiles (discussed in Section 4.3.3).

Using any one of these distance measures between gene expressions, gene clustering

and ordering can be performed.

Gene ordering is primarily necessary for identifying groups of highly co-regulated

genes (discussed in detail in Section 1.6.4). Our proposed methods using FRAG GA-

LK, in Chapter 2 and 3 [91], and existing algorithm Concorde LP [5] for finding

optimal gene order, spend most of the time in repetitive searching for the lowest

value (optimal value) of the sum of global similarities within gene groups of the

same biological category, and result in the same biological score for all possible

permutations of genes within the same group. Although this repetitive searching is

obvious and useful for unidirectional optimal gene ordering, to avoid this situation

in ‘gene ordering in partitive clustering’ framework, a fast gene ordering algorithm

called “Minimal Neighbor” (MN), using nearest neighbor tour construction heuris-

tic and involving O(n2) time complexity for computationally effective gene ordering,

is described in this chapter.

Superiority of the proposed Maxrange distance measure over the related mea-

sures is established by using them on three different ordering algorithms, four clus-

tering algorithms, and one hybrid algorithm. Similarly, the comparability of the

MN algorithm as compared to two existing algorithms is demonstrated for three

different distance measures. First, MN is compared with related algorithms in ‘uni-

directional gene ordering’ framework and then its utility is shown in ’gene ordering

in partitive clustering’ framework. While the Maxrange distance provides the best

similarity between genes, MN is seen to provide comparable biological gene ordering

75

with Concorde LP [5] and FRAG GALK.

The widely used distance measures, gene clustering algorithms and gene or-

dering methods are described in Section 3.2.1, 1.6.3, and 1.6.4, respectively. In

this chapter, first, the state-of-the-art work in distance measures and gene ordering

algorithms are mentioned in Section 4.2. In Section 4.3, preliminary concepts of

microarray technology, description of the data sets, their experimental condition

and data preprocessing methods are provided. The proposed measure for gene ex-

pression distance and the fast algorithm for gene ordering is also explained in this

section. The biological interpretation of the output obtained by different ordering

algorithms is performed with Eq. 3.5 (described in Section 3.4). Experimental

results are reported in Section 4.4. Finally, some conclusions and discussions are

presented. The methods, algorithms and some of the results presented in this chap-

ter have been reported in [89,92].

4.2 Existing Approaches

4.2.1 Distance Measures

Various methods for extracting meaningful information from gene expression data

have already been proposed in the literature. The methods for finding gene ex-

pression similarity between genes using the Pearson correlation [30], Manhattan (or

Minkowski) distance [60] and the Euclidean distance [18, 43, 103] are described in

previous chapters. A method for approximating an ideal similarity between genes

(using thier expression), by training a neural network, has been suggested in [98].

Spellman et al. [105] used uncentered Pearson correlation as a similarity measure

between genes. Qian et al. [83] addressed the problem of identifying local similarities

in gene expression data by means of a method that is based on the Smith-Waterman

algorithm for (local) sequence alignment. All of the aforementioned indices are nu-

merical measures in the sense that they depend on the concrete numbers in the

expression profiles. As opposed to this, Wen et al. (1998) suggest a shape-based

similarity measure that compares two profiles on the basis of qualitative changes of

expression values. Thus, two sequences are considered as similar if they increase and

decrease more or less simultaneously. Filkov et al. [37] proposed a edge detection

based similarity measure for periodic datasets with small sequences. This method

76

looks for local regions in pairs of expression profiles where major changes in expres-

sion occur (edges). The profiles are regarded as similar if they do have similar edges.

Balasubramaniyan et al. [11] used a local shape based similarity measure motivated

by BLAST algorithm to cluster time series of gene expression data. By converting

a time series into a sequence of events such as increase or decrease, the shape based

methods tend to oversimplify the original data. This makes them robust toward

noise and outliers, but loss of lot of information contained in the original time series

makes the measure unsuitable for gene ordering. So shape based similarity measures

are not considered in this investigation for gene ordering. One can thus construct

a matrix of inter-gene similarties/distances using any similarity/distance measure,

which serves as a knowledge-base for finding gene cluster or gene order or both.

4.2.2 Gene Clustering Methods

Cluster analysis and displays of gene expression patterns are considered to be useful

tools to detect genes that are co-expressed or implicated in similar cellular func-

tions [18,31,109]. Clustering methods can be broadly divided into hierarchical and

nonhierarchical clustering approaches and described in Section 1.6.3. In brief, hier-

archical clustering approaches (single, complete and average linkage) [2,14,18,31,56]

group gene expressions into trees of clusters. They start with singleton sets and

merge all genes until all nodes belong to only one set. Nonhierarchical cluster-

ing approaches, such as k-means [49], self-organizing map (SOM) [109], Bayesian

clustering [15], CAST [16], and CLICK [101], separate genes into groups according

to the degree of distance among genes. The relationships among the genes in a

particular cluster generated by nonhierarchical clustering methods are lost.

4.2.3 Gene Ordering Methods

Gene ordering methods in travelling salesman problem framework and hierarchical

clustering framework are discussed in Section 2.2 and 1.6.4, respectively. A method

for ordering genes for a partitive clustering solution is reported in Chapter 3. The

utilities and applications of these methods are also shown in the respective sections

and chapters. Here, we will discuss the issues related with the need for developing

a new gene ordering algorithm for partitive clustering solution with lower time

complexity than existing algorithms. The details of the new ordering algorithm are

77

discussed in Section 4.3.4.

Ray et al. [91] and Tsai et al. [115] applied genetic algorithm for solving op-

timal gene ordering problem without clustering. Related works are also available

in [26, 27]. These algorithms are very useful in identifying groups of highly corre-

lated eight to ten genes for inferring regulatory networks, and manual identification

of clusters from the heat map of the ordered genes. However, application of these al-

gorithms in partitive clustering solution results in repetitive searching for lower sum

of gene distances. Consequently, repetitive searching leads to significant increase

in computational time with respect to all other hierarchical clustering based ap-

proaches. For example FRAG GALK [91], HeSGA [115], and take about 245, 612,

and 5042 seconds, respectively, for finding gene/city order for 3038 genes/cities on

a pentium IV 1.2 MHz pc with C++, and the time is exponentially growing with

higher number of genes/cities, whereas hierarchical clustering and SOM based gene

approaches take on average 90-200 seconds for the same problem.

4.3 Materials and Methods

4.3.1 Preliminary Concepts for Measuring Gene Expression

with Fluorescence Scanner

In Section 1.4, it is mentioned that, in cDNA (clone DNA) microarray-based in-

vestigations, RNA from experimental samples (taken at selected times during the

process) is labelled during reverse transcription with the red-fluorescent dye Cy5 and

is mixed with a reference sample labelled in parallel with the green-fluorescent dye

Cy3 [31]. After hybridization and appropriate washing steps, separate images/spots

are acquired for each fluor, and fluorescence intensity ratios are obtained for all tar-

get elements. It is also necessary to mention again that, if R (red) and G (green)

are the spot-specific, quantitated, fluorescent intensities of the target and reference

expression signals respectively, relative gene expression is defined as the log ratio

M = log2
R
G

.

Fluorescence is currently the predominant method for microarray signal detec-

tion [33]. A critical component of a fluorescence scanner is the photomultiplier tube

(PMT), in which fluorescent photons produce electrons that are amplified by the

78

Figure 4.1: Calibration curves of photomultiplier tube under different PMT gains.
X-axis: log10 concentration, Y-axis: log10 fluorescence intensity. A: Cy5 dye;
B: Cy3 dye. Representative calibration curves are presented in C (Cy5 and Cy3
channels are scanned under the same PMT gain of 700 V) and D (the Cy5 and Cy3
channels are scanned at 700 V and 400 V, respectively). (Figure is taken from [33]).

PMT gain. For many microarray scanners, the calibration curve (i.e., the curve

showing the relationship between dye concentration and fluorescence intensity) de-

pends on the PMT gain setting [33]. This PMT gain is also varied for different

types of experiments of different biological origin. DNA microarray measurements

normally assume a linear relationship between detected fluorescent signal and the

concentration of the fluorescent dye that is incorporated into the cDNA (clone DNA)

79

or RNA molecules synthesized from the test sample. Each PMT has its own linear

dynamic range within which signal intensity increases linearly with the increase

of fluorescent dye concentration [33] (see Fig. 4.1). This linear dynamic range

also fixes the dynamic range of the recorded microarray data (log ratio values) [33]

within which the data values are most reliable and used as the normalization factor

in the proposed distance measure to remove variations of biological origin. For ex-

ample, in Cell Cycle related experiments, for dye Cy5 PMT gain at 960 volts fixes

the intensity range from x1 to x2, and for dye Cy3 PMT gain at 760 volts fixes the

intensity range from y1 to y2. So the linear dynamic range of PMT fixes the linear

dynamic range of the data from log2
x1
y1

to log2
x2
y2

. Note that, this dynamic range is

not obtained from the datasets and hence is not sensitive to outliers. Normalization

with standard deviation (used in Pearson correlation) for all the expression values

for a particular gene also removes variations due to biological origin like Cell Cycle,

sporulation etc. However, due to the wide concentration range for genes expressed

in a biological sample, the detected fluorescence intensity does not necessarily re-

main in the linear range for all genes tiled on a microarray (on average 5% of the

gene expression values in each dataset used in this investigation are outside the

linear range even after normalization). Nonlinearity between fluorescence intensity

and dye concentration can occur due to chemical saturation, dye quenching, signal

bleaching, optical saturation, and instrument limitations. To remove impact of such

nonlinear bias and variations on microarray data, many normalization methods have

been proposed (see Section 1.6.2) in the literature.

The proposed dynamic range based normalization (described in Section 4.3.3

in terms of similarity measure) belongs to between-slide or multiple-slide normal-

ization [127]. The two other normalization factors in this category, which aim to

allow experiment to experiment comparisons when different types of experiment

have substantially different spreads in log ratios, are median absolute deviation and

variance regularization (see Section 1.6.2). These two normalization methods, viz.,

MAD and variance regularization, were implemented for the purpose of comparison.

However, the results obtained were not very encouraging.

80

Table 4.1: Summary for different microarray data sets
Dataset Genes Category Experiments performed Total

Cell Cell Cycle sporulation shock diauxic shift
Cycle 652 MIPS (-1.2 to 1.2) (-3.0 to 3.0) (-1.5 to 1.5) (-2.0 to 2.0)

16 93 9 56 26 184
Yeast Cell Cycle sporulation shock diauxic shift

Complex 979 MIPS (-1.2 to 1.2) (-3.0 to 3.0) (-1.5 to 1.5) (-2.0 to 2.0)
16 18+14+15 7+4 6+4+4 7 79

All Cell Cycle sporulation diauxic shift
Yeast 6221 MIPS (-1.2 to 1.2) (-3.0 to 3.0) (-2.0 to 2.0)

18 60 13 7 80
Fibr- Serum response cycloheximide
oblast 517 GO (-3.0 to 3.0) (-3.0 to 3.0)

1347 12 6 18
Gene- No KSHV -TPA TPA

Herpes 106 Bank (-13.0 to 13.0) (-13.0 to 13.0) (-13.0 to 13.0)
5 1 7 13 21

4.3.2 Description of Data Sets

The datasets used in this investigation are also used in the previous investigation and

described in Section 3.3.1. Here, we will mention the details of linear dynamic range

of photomultiplier tube, used for each type of experiment, and the issues related with

data format and downloading. Table 4.1 shows the name of the data sets, number

of genes in each dataset, number of gene categories, name of experiment types and

number of experiments performed under each type, and finally the total number of

experiments performed for a particular dataset. The dynamic range of expression

values of each experiment is shown within parenthesis. The dynamic range of

available data represents log ratios of -1.2 to 1.2 for the cell-cycle experiments,

-3.0 to 3.0 for sporulation, -1.5 to 1.5 for the shock experiments, -2.0 to 2.0 for

the diauxic shift, -3.0 to 3.0 for Fibroblast data, and -13.0 to 13.0 for Herpes data.

Herpes data is generated using radioactive probes instead of fluorescent probes

and hence higher linear dynamic range is observed than the other data sets. The

information for Herpes data is obtained from Dr. Paul Kellam upon request.

The first three data sets of Saccharomyces cerevisiae consists of about 652, 979

and 6221 genes, and 184, 79 and 80 microarray experiments respectively. The genes

in the three data sets are classified according to MIPS [38] categorization into 16,

16, and 18 groups respectively. For the Cell Cycle data, first we have downloaded

652 Cell Cycle regulated gene names from the MIPS website. These gene names are

then uploaded in Stanford Microarray Database [32] and corresponding gene expres-

sion values are downloaded with default parameters by selecting all the cell-cycle,

81

sporulation, heat shock and diauxic shift experiments. The default parameters in-

clude intensity-dependent ratio bias correction with Lowess [25] and log2
R
G

format.

The Yeast Complex and All Yeast datasets are available log2
R
G

format and assumed

to be corrected from intensity-dependent ratio bias as separate R and G values are

not available. The fibroblast dataset consists of 517 genes and 18 time points related

to the response of human fibroblasts to serum. According to Gene Omnibus (GO)

annotation, 517 fibroblast genes are distributed in 1347 categories. This dataset is

available in two formats (R
G

and log2
R
G

). We have downloaded the data in second

format. Similarly for herpes data two formats are available and data in log2
R
G

for-

mat has been downloaded with 106 genes and 21 experiments. Herpes virus genes

are broadly assigned to five functional groups and available in [51] and genes that

could not be assigned to any of these five groups are designated unknown.

When the data sets are downloaded from the website it is found that about 5%

of the gene expression values in each dataset is beyond the above specified dynamic

range, so for the Cell Cycle dataset any value beyond the range -1.2 to 1.2 is

truncated to the minimum/maximum reliable value. Similarly for other datasets the

gene expression values are truncated accordingly. Note that, we have also treated

the values outside the linear dynamic range as missing values, and predicted them

with LSimpute [8] (statistical package to predict missing values). In this case also

the predicted values are very near to one of the boundaries of linear dynamic range

and supported our method of truncation. This also provides superior results (in

terms of biological score discussed in Section 3.4) than without truncation for all

the data sets, algorithms, and similarity measures.

4.3.3 New Distance Measure

A natural basis for organizing gene expression data is to group together genes with

similar patterns of expression. The first step to this end is to adopt a mathematical

description of distance. A number of measures of distance in the behavior of two

genes can be used, such as the Manhattan distance, Euclidean distance, Pearson

Correlation. The Pearson correlation is over-sensitive to large three fold changes

(peaks) in gene expression profiles due to multiplication of expression vectors in dot

product style, and therefore leads to false interpretation of distance between genes in

certain cases. Moreover, it is observed that often microarray data consist of different

82

sets of expression values corresponding to different experiment types. For example,

for Yeast Complex data, four sets of expression values (each set containing multiple

time series gene expression) can be recorded for cell-division cycle, sporulation,

shock, and diauxic shift respectively. Existing distance measures usually take the

same normalization factor (like standard deviation for Pearson correlation) for a

gene. This normalization factor

• is independent of the type of experiment

• performs global normalization to all the expression values for a particular

gene; thus loosing useful local information and

• varies from gene to gene

But, a closer look at the gene expression data reveals that the dynamic range of

expression values differs with the type of experiment, and remains the same for all

the genes in the dataset. So, using the same normalization factor is undesirable

for all types of experiments, where expression values differ by orders of magnitude

from one kind of experiment to another. Consequently, it may be appropriate and

better if the normalization is performed

• separately for the different types of experiment with different normalizing

factors; thereby preserving the local information

• keeping the same set of normalization factors for all the genes in the dataset.

Such an attempt is made in this chapter where two new distance measures are

developed using Manhattan distance and Euclidean distance respectively (to avoid

over sensitivity to three fold changes), in which the normalization is dependent on

the type of experiment. This, in turn, results in equal weighting of distance values

for different experiment types. The normalization factor is chosen as the linear

dynamic range of data values obtained from photo multiplier tube, for a particular

type of experiment.

Let

X = xe1
1 , · · · , xe1

i1
, xe2

1 , · · · , xe2
i2

, · · · , xem
1 , · · · , xem

im
and

Y = ye1
1 , · · · , ye1

i1
, ye2

1 , · · · , ye2
i2

, · · · , yem
1 , · · · , yem

im

83

be the expression levels of the two genes in terms of log-transformed microar-

ray gene expression data obtained over a series of m different types of experiment

(e1, e2, · · · em) consisting of i1 + i2 + · · ·+ im experiments in total. Using Manhattan

distance the Maxrange distance between X and Y is defined as

Maxrange-MX,Y =
1

m

m∑
r=1

1

ir
×
∑ir

j=1 |xer
j − yer

j |
Maxer − Miner

(4.1)

where, Maxer and Miner are the maximum and minimum log2(R/G) values

obtained from the linear dynamic range of the photo multiplier tube (or radioactive

probe) for an experiment of type er.

The following can be stated about the measure:

1. 0 ≤ Maxrange-MX,Y ≤ 1

2. Maxrange-MX,Y = 0 if and only if X = Y

3. Maxrange-MX,Y = Maxrange-MY,X (symmetric).

Using the Euclidean distance the Maxrange distance between X and Y is defined

as

Maxrange-EX,Y =
1

m

m∑
r=1

1

ir
×
√∑ir

j=1(x
er
j − yer

j)2

Maxer − Miner

(4.2)

Throughout the literature we have used Maxrange-M and Maxrange-E for rep-

resenting Maxrange distance measure using Manhattan and Euclidean distance re-

spectively.

Let three genes X, Y , and Z with four different types of experiments, have the

gene expression values

X = 0.02, − 0.1, 2.9, 0.1, − 0.1, 0.1, − 0.15, 0.1

Y = 0.1, − 0.05, 0.15, − 0.2, − 0.3, 0.64, 0.0, 0.3. and

z = 0.13, − 0.09, 0.1, − 0.2, 1.2, 1.2, 1.7, 1.9

Assume that the first two expression values for all the genes correspond to cell-

cycle experiments with dynamic range between 1.2 to -1.2 i.e., (Maxe1 − Mine1 =

2.4), the third and fourth values correspond to sporulation experiments with dy-

namic range between 3.0 to -3.0 i.e., (Maxe2 − Mine2 = 6), the fifth and sixth

values correspond to shock experiments with dynamic range between 1.5 to -1.5

84

i.e., (Maxe3 −Mine3 = 3) and the seventh and eighth values correspond to diauxic

shift experiments with dynamic range between 2.0 to -2.0 i.e., (Maxe4−Mine4 = 4).

So Maxrange-M distance and Pearson Correlation distance between gene X and Y

is 0.11208 and 0.85202, respectively.

1 2 3 4 5 6 7 8
−0.5

0

0.5

1

1.5

2

2.5

3

Time series experiments−−−−−>

Ge
ne

 ex
pr

es
sio

n v
alu

es
−−
−−
−−

>

Gene X

Gene Z

Gene Y

Figure 4.2: Expression profile for three genes. According to Maxrange-M, distance
between genes X and Y is higher than Z and Y which is in opposition with Pearson
correlation and Euclidean distance

To illustrate the difference between the Maxrange-M and Pearson correlation,

consider Gene X and Gene Y in Fig. 4.2, which shows two profiles (of length

8), which are highly similar according to the Maxrange-M but almost dissimilar

(uncorrelated) according to the Pearson correlation. This is mainly caused by

the comparatively large value of the third fold change in Gene X. As opposed to

this, in Maxrange-M, sensitivity to three fold change is avoided using Manhattan

distance, and normalization with dynamic range of type of experiment correctly

reflects the fact that both profiles have similar expressions for three types of experi-

ments namely, cell-cycle, shock and diauxic shift, and differs in only one expression

(among two expressions) for sporulation experiments. Maxrange-E distance also

shows similar performance as Maxrange-M. The Euclidean distance between X and

85

Y is 2.8382, and Y and Z is 2.8317. But X differs with Y in only one expression

value of high range experiment type (Maxer −Miner = 6), whereas, Z differs with

Y in three expression values of relatively small range experiment type. So in the

case of Euclidean distances, experiment types with high range dominate the exper-

iment types with small range ones. Pearson correlation also assigns higher distance

between X and Y (0.85202) than Y and Z (0.67295), neglecting the fact that Y

and Z differ significantly in 5th, 7th and 8th expression values in two types of ex-

periments that have small ranges, while X and Y differ significantly in only one

expression (3rd) of high range. As opposed to these, Maxrange-M distance between

X and Y is 0.11208, which is less than the distance between Y and Z (0.19365).

Maxrange-E distance between X and Y is also less than the distance between Y

and Z.

4.3.4 New Ordering Algorithm

The existing algorithms for finding the optimal gene order spend most of the time

in repetitive searching for the lower value of the sum of gene expression distances in

gene groups (genes belonging to same category), and result in the same biological

score for all possible permutations of genes within the the same group. Under this

situation, to avoid repetitive searching, the nearest neighbor (NN) tour construction

heuristic can be used to find a near optimal gene order in terms of gene expression

distance. The NN tour has the advantage that it commits only a few severe mistakes

in tour construction, while there are long segments connecting nodes with short

edges. It has a disadvantage that, several genes which are not considered during

the course of the algorithm are inserted at high costs in the end. To overcome this to

some extent, we propose a new heuristic based Minimal Neighbor (MN) algorithm.

Let 1, 2, .., i, ...n represent the indices of n genes in the microarray dataset and

the distance between gene i and i + 1 be denoted as Ci,i+1. Given this microarray

dataset of n genes to be ordered and pairwise distance/similarity (of each gene with

all other genes) kept in an n × n matrix (after calculating), the different steps of

applying MN are explained below.

S1) Find the closest (most similar) pair of genes and merge them into a single

array (string), so that there remains n − 2 genes.

86

S2) Consider only the two end genes of the new array and find two closest genes

for each of them from the remaining genes. Out of these two selected genes,

find the one closer to one of the end genes of the array, and then place it next

to that. The other selected gene is not connected and kept with the remaining

genes. The index of this gene is stored for use in the next step. (Note that,

if both the selected genes are the same in this step then no gene index can

be stored and in the next step we have to compute twice for selection of two

genes, else, only one closest gene is needed to be computed.)

S3) Repeat S2 until all genes are aligned into a single array of size n.

Computational complexity of Step 1 is O((n/2)2) as the distance matrix is a sym-

metric one. This step can be performed during the calculation of n × n distance

matrix also. For Steps 2-3 the worst case complexity is O(2 ∗ (n − 2) ∗ n). So the

total complexity of the algorithm is O(n2).

Example: let us consider a microarray data set with five genes represented by

1, 2, 3, 4 and 5, and a 5× 5 distance matrix computed using pairwise distance. Let

the closest pair of genes be 2 and 4. So they are merged to form a string as

P1 = 2 4.

For these two end genes (2 and 4), the closest gene (from 1, 3 and 5) is determined

using the 5 × 5 distance matrix. In this example, let the closest gene from 2 be 5

and from 4 be 1. Moreover let the gene 5 be closer to 2 than 1 from 4. Then 5 is

selected and connected to 2 to form a string like

P2 = 5 2 4.

The next closer pairs are then searched for 5 and 4 out of the remaining genes 1

and 3, and let these be found as 3 5 and 4 1. Suppose 4 1 pair is closer than 3 5.

Then 4 and 1 are connected to form the string

P3 = 5 2 4 1.

Finally from the two end genes 5 and 1, let the gene 3 be found to be closer to gene

87

1. Then the final string P4 is formed as

P4 = 5 2 4 1 3.

4.4 Experimental Results

Algorithms of gene ordering and clustering are implemented using mex files in Mat-

lab 7 on Sun Fire V 890 (1.2 GHz and 8 GB RAM). The codes for single, average and

complete linkage and Bar-Joseph et al.’s [14] method are downloaded from [118].

Performance of the proposed Maxrange-M and Maxrange-E distance are compared

with Pearson correlation, Euclidean distance, and Manhattan distance. The MN

algorithm for gene ordering is compared mainly with FRAG GALK [91] and Con-

corde LP [5]. Performance comparisons of MN with Bar-Joseph et al.’s gene order-

ing [14], and partitive clustering methods with “gene ordering with MN in partitive

clustering solutions” are also provided. SOM and k-means are used with 16, 16, and

18 nodes (clusters) for clustering Cell Cycle, Yeast Complex, and All Yeast data

sets, respectively, as genes in these datasets are classified according to MIPS [38]

categorization into 16, 16, and 18 groups. For Fibroblast data SOM is used with

6 nodes as 6 gene clusters are identified in [101]. Herpes data is clustered using 5

nodes of SOM as there are 5 gene groups [51]. Finally MN is applied separately on

the gene clusters obtained by partitive clustering methods.

4.4.1 Comparative Performance of Algorithms and Distance

Measures

Table 4.2 shows, as an illustration, the summation of gene expression distances in

terms of F (n) (computed using Eq. 2.2 for Concorde LP, MN and B-joseph) and

F1(n) value (computed using Eq. 3.4 for SOM+MN) with Maxrange-M, Pearson

Correlation, and Euclidean distance for all the datasets and four ordering algo-

rithms. In this comparative study among the ordering algorithms, FRAG GALK

and Concorde LP provide identical and the lowest sum of gene expression distances

in terms of F (n) (Eq. 2.2) value for all the distance measures and data sets, though

they have the higher computational complexity (O(n5) and O(2n), respectively)

than related algorithms. Gene ordering results provided by Concorde LP are not

shown in any table of this result section as they are identical with FRAG GALK.

88

Table 4.2: Summation of gene expression distances computed in terms of F (n) (Eq.
2.2 for FRAG GALK, MN and B-joseph) and F1(n) (Eq. 3.4 for SOM+MN) value
for different ordering algorithms and distance measures

Data Sets
Dist. Algo. Cell Yeast All Fibro- Herpes

cycle comp. Yeast blast
Max FRAG GALK 69.00 80.87 463.85 26.21 2.73
-ran MN 71.50 84.31 481.69 27.87 2.89
-ge B-joseph 71.67 84.75 493.51 27.87 2.80
-M SOM+MN 73.91 88.27 505.12 29.27 3.12
Pea FRAG GALK 286.51 306.14 1773.15 71.82 11.69
-rs MN 298.25 327.92 1874.23 81.53 12.37
-on B-joseph 300.51 330.17 1920.82 81.71 12.12

SOM+MN 323.67 361.17 1970.16 99.96 14.34
Euc FRAG GALK 3913.90 3244.75 20302.16 851.86 419.48
-lid MN 4039.40 3386.11 21101.72 902.23 431.73
-ean B-joseph 4051.43 3388.90 21530.38 897.25 431.36

SOM+MN 4197.93 3518.30 21525.84 943.27 475.23

Superior performance of FRAG GALK w.r.t. all other related algorithms for find-

ing optimal gene/city order, in terms of computational time, are shown in Table

2.4 and Section 2.5.2. MN and B-joseph’s algorithm provide comparable results

in terms of F (n) value. Table 4.3 shows the comparative study in terms of F (n)

Table 4.3: Summation of gene expression distances computed in terms of F (n) (Eq.
2.2 for average, complete and single linkage) and F1(n) (Eq. 3.4 for SOM) value for
different clustering algorithms and distance measures

Data Sets
Dist. Algo. Cell Yeast All Fibro- Herpes

cycle comp. Yeast blast
Maxra AL 76.02 91.31 524.05 32.17 3.420
-nge-M CL 76.20 91.28 523.64 31.57 3.522

SL 97.28 120.62 787.56 49.59 4.486
SOM 88.24 112.18 712.87 48.54 4.182

Pear AL 332.54 373.80 2187.12 107.22 16.26
-son CL 335.17 370.41 2192.12 103.09 14.62

SL 481.91 584.74 4199.21 222.93 19.83
SOM 445.34 547.16 3446.60 202.34 18.03

Eucli AL 4289.53 3633.66 22750.80 1025.54 496.71
-dean CL 4254.10 3612.30 22610.28 1026.80 496.43

SL 5355.10 4828.70 33517.56 1537.40 698.71
SOM 5073.64 4376.70 28624.69 1389.16 644.37

(computed using Eq. 2.2 for average linkage (AL), complete linkage (CL) and sin-

89

gle linkage (SL)) and F1(n) value (computed using Eq. 3.4 for SOM) among four

clustering algorithms. It may be noted that clustering and ordering algorithms can-

not be compared as clustering algorithms do not optimize F (n) (or F1(n)) value;

hence F (n) (or F1(n)) values for clustering algorithms are higher than those for the

ordering algorithms (reported in Table 4.2), which is expected. In this case, single

linkage (SL) and SOM are found to provide poor performance.

Table 4.4 compares the performance of our proposed approach with those of the

other ordering methods in terms of the S value (Eq. 3.5). Three distance measures

are considered, namely, Maxrange-M, Pearson and Euclidean. The biological scores

corresponding to Manhattan Distance are found to be comparable to those for

Pearson Correlation, and hence omitted here. The percentages of improvement

over the lowest biological score (in terms of S value) in a particular data set are

shown within parenthesis, and defined as:

PIi,j =
di,j − mini(di,j)

mini(di,j)
× 100 (4.3)

where, di,j indicates the biological score (S value) in ith row and jth column of

the result matrix in the concerned tables (Tables 4.4, 4.5, and 4.6), and mini(di,j)

indicates the minimum biological score in column j for all i.

Table 4.4: Biological Score and Percentage of Improvement (PI) value (within
parenthesis) for different gene ordering algorithms and distance measures

Data Sets
Algo. Dist. Cell Yeast All Herpes

& complexity cycle comp. Yeast
FRAG GALK Maxrange-M 420 (10.24) 1089 (11.69) 2383 (6.05) 44 (29.41)

Pearson 400 (4.99) 1039 (6.56) 2350 (4.58) 34 (0.00)
O(n5) Euclidean 400 (4.99) 1051 (7.79) 2415 (7.48) 40 (17.65)
Min. Maxrange-M 425 (11.55) 1075 (10.26) 2388 (6.28) 43 (26.47)

Neigh. Pearson 403 (5.77) 1031 (5.74) 2349 (4.54) 37 (8.82)
O(n2) Euclidean 406 (6.56) 1010 (3.59) 2382 (6.01) 40 (17.65)

Bar-Joseph Maxrange-M 423 (11.02) 1074 (10.15) 2371 (5.52) 43 (26.47)
et. al. Pearson 381 (0.00) 1024 (5.03) 2350 (4.58) 38 (11.76)
O(n4) Euclidean 421 (10.50) 1013 (3.90) 2346 (4.41) 40 (17.65)

SOM+Minimal Maxrange-M 409 (7.35) 1039 (6.56) 2335 (3.92) 42 (23.53)
Neighbor Pearson 386 (1.31) 1002 (2.77) 2302 (2.45) 38 (11.76)

O(n2) Euclidean 381 (0.00) 975 (0.00) 2247 (0.00) 37 (8.82)

90

Similarly, the results for clustering algorithms in terms of S value, and percent-

age of improvement over the lowest biological score (using Eq. 4.3) are shown in

Table 4.5. Table 4.6 shows the performance of our proposed approach ‘SOM+MN’

with respect to SOM alone for the same set of parameters. These PI values in

Table 4.4 to 4.6 are used in the next section for conducting t-tests.

Table 4.5: Biological Score and Percentage of Improvement (PI) value (within
parenthesis) for different clustering algorithms and distance measures

Data Sets
Algo. Dist. Cell Yeast All Herpes

& complexity cycle comp. Yeast
Average Maxrange-M 415 (15.60) 1040 (22.50) 2341 (21.30) 39 (11.43)
Linkage Pearson 385 (7.24) 987 (16.25) 2292 (18.76) 38 (8.57)

O(n2 log n) Euclidean 403 (12.26) 1011 (19.08) 2431 (25.96) 39 (11.43)
Complete Maxrange-M 407 (13.37) 1043 (22.85) 2305 (19.43) 38 (8.57)
Linkage Pearson 393 (9.47) 955 (12.49) 2301 (19.22) 36 (2.86)

O(n2 log n) Euclidean 403 (12.26) 999 (17.67) 2269 (17.56) 37 (5.71)
Single Maxrange-M 382 (6.41) 903 (6.36) 1970 (2.07) 41 (17.14)

Linkage Pearson 359 (0.00) 902 (6.24) 1973 (2.23) 39 (11.43)
O(n2) Euclidean 361 (0.56) 849 (0.00) 1930 (0.00) 36 (2.86)
SOM Maxrange-M 389 (8.36) 973 (14.61) 2100 (8.81) 40 (14.29)

Pearson 369 (2.79) 944 (11.19) 2073 (7.41) 36 (2.86)
O(n2) Euclidean 361 (0.56) 902 (6.24) 2041 (5.75) 35 (0.00)

Table 4.6: Biological Score and Percentage of Improvement (PI) value (within
parenthesis) for ‘SOM+MN’ and SOM

Data Sets
Algo. & Dist. Cell Yeast All Herpes

complexity cycle complexes Yeast
SOM+MN Maxra 409 1039 2335 42

-nge-M (13.30) (15.19) (14.40) (20.00)
O(n2) Pear 386 1002 2302 38

-son (6.93) (11.09) (12.79) (8.57)
Eucli 381 975 2247 37
-dean (5.54) (8.09) (10.09) (5.71)

SOM Maxra 389 973 2100 40
-nge-M (7.76) (7.87) (2.89) (14.29)
Pear- 369 944 2073 36
-son (2.22) (4.66) (1.57) (2.86)

O(n2) Eucli 361 902 2041 35
-dean (0.00) (0.00) (0.00) (0.00)

For Fibroblast data, no biological score can be provided as genes in the same

91

biological group for this data are rare. In order to investigate the effect of normal-

ization using median absolute deviation (MAD) or variance regularization factor,

a series of experiments with and without normalization is conducted. For each of

the distance measure and any algorithm, the biological scores (in terms of S value)

obtained using MAD (or, variance regularization factor) normalization are found to

be inferior to the biological scores with Maxrange normalization. For the purpose

of illustration, the biological scores with MAD-M distance (MAD normalization

and Manhattan distance) are provided in Table 4.7 for MN algorithm. Though in

most of the cases Maxrange-E distance is found to be superior to Euclidian distance

and inferior to Maxrange-M, for All Yeast data, it performs better than Maxrange-

M for MN and average linkage algorithms (some results are shown in Table 4.7

for illustration). When the microarray data sets contain experiments with data

Table 4.7: Selected Biological Scores for Maxrange-E for different algorithms and
Maxrange-E distance

Data Sets
Algo. Dist. Cell Yeast All Herpes

cycle complexes Yeast
MN MAD-M 406 1048 2349 38
MN Maxrange-E 420 1061 2450 41
AL Maxrange-E 413 1018 2441 39

value of same dynamic range, like Herpes, then Maxrange-M provides identical re-

sults with Manhattan distance for all widely used ordering algorithms. However

the superiority of Maxrange-M is evident when different types of experiments are

present in a particular microarray data. For example, superior results are obtained

with Maxrange-M for most of the available algorithms for the Cell Cycle, Yeast

complex and All Yeast data sets (shown in first row for each algorithm in Table

4.4). The available measures for gene distance, like Manhattan distance, Euclidean

distance and Pearson correlations, are suitable for the same type of experiments

in microarray data, but they are unable to assign different weights of distance for

different types of experiments. In contrast, the Maxrange-M and Maxrange-E dis-

tance provides this flexibility, and hence better results are obtained for multiple

type of experiments.

92

4.4.2 Statistical Analysis of Maxrange-M Distance Mea-

sure and Minimal Neighbor Ordering Algorithm

To statistically compare the performance of Maxrange-M distance with Pearson

Correlation in case of ordering algorithms, t-tests are performed with the PI (Eq.

4.3) values shown within parenthesis in Table 4.4, using the equation

t =
PI1 − PI2√

V ariancePI1
n1

+ V ariancePI2
n2

. (4.4)

where, PI1 and V ariancePI1 are the mean and the variance of all the available PI

values for Maxrange-M distance in Table 4.4. PI2 is used for Pearson Correlation

and n1 = n2 = 16, as there are 16 PI values available in total from Table 4.4 for each

of the distance measures with 4 datasets and 4 algorithm. So, the degrees of freedom

for t-test are 16 × 2 − 2 = 30. Similarly, t-test is also performed for Maxrange-M

distance and Euclidean distance. The two t values and related p values are shown

in Table 4.8. The alternative hypothesis (H1), that the average of ‘percentages

of improvement over the lowest biological score’ for the Maxrange-M distance is

better than the related one (Pearson or Euclidean), is used in the calculation of

t-statistics. The final conclusion, once the test has been carried out, is always given

in terms of the null hypothesis (H0), that there is no difference between the averages

of ‘percentages of improvement over the lowest biological score’ for the two distance

measures. We either ‘reject H0 in favor of H1’ or ‘do not reject H0’. After finding

the p values (from t-table) for corresponding t values, we reject the null hypothesis

for both the cases with significance level 0.001 and 0.02 respectively, which suggests

that there is strong evidence against the null hypothesis in favor of the alternative.

We have also performed t-tests with the PI values for clustering algorithms (shown

in Table 4.5), and the results favored the alternative hypothesis, that the average

of ‘PI values’ for the Maxrange-M distance is better than the related one (Pearson

or Euclidean) with significance level 0.02 and 0.04 respectively.

Similar types of t-tests with the alternative hypothesis, that the average of

‘percentages of improvement over the lowest biological score’ for the MN algorithm

is better than the related algorithm (FRAG GALK or B-joseph.), are also performed

with the percentages of improvement shown in Table 4.4. The results are shown in

Table 4.9. For each algorithm there are 12 PI values (for 4 datasets and 3 distance

93

Table 4.8: Results of t-test for different pairs of distance measures
Pairs of distance measure

Maxrange-M Maxrange-M
& Pearson & Euclidean

t 3.4247 2.1563
p 0.001 > p 0.02 > p

measures) and hence 12×2−2 = 22 degrees of freedom are available for each t-test.

From the results of t-test and p values, the null hypothesis, “ there is no difference

between the averages of ‘percentages of improvement over the lowest biological

score’ for the two algorithms” is accepted for the pairs MN-FRAG GALK and MN-

B-joseph. Alternative hypothesis, that the average of ‘percentages of improvement

over the lowest biological score’ for ‘SOM+MN’ is better than SOM, is favored in

t-test with the PI values shown in Table 4.6.

Table 4.9: Results of t-test for different pairs of algorithms
Algorithm pairs

Min. Neigh. Min. Neigh. (SOM +
& FRAG GALK & Bar-Joseph Min. Neigh.)

et. al. & SOM
t 0.051 0.067 4.103
p p > 0.5 p > 0.5 0.0001 > p

4.4.3 Subcluster Identification and Grouping of Correlated

Genes by Minimal Neighbor

To show how MN helps to identify subclusters within large clusters and groups

functionally correlated genes within clusters to improve solution quality of a par-

titive clustering solution, MN is applied separately on the gene clusters found by

SOM. Results/improvements found by combining these two algorithms are shown

in Tables 4.2, 4.4, and 4.9. The visual displays ‘SOM+MN’ are almost identical

with ‘SOM+FRAG GALK’, shown in Fig. 3.1-b and 3.1-d, for same clustering solu-

tions of SOM using Fibroblast and Yeast Complex data. Moreover, the subclusters

identified by MN are similar to FRAG GALK for Yeast Complex data, which are

provided in Table 3.2 and explained in Section 3.5.1.

As mention in Section 3.5.1, Herpes data is clustered with k=5 (5 clusters) using

94

a) b) c)

Figure 4.3: Comparing CLICK (Fig. a), ‘CLICK+MN’ (Fig. b), and ‘CLICK
+FRAG GALK’ (Fig. c) for Herpes data.

K-means. Visual display of the first four clusters are shown in Fig. 3.2-c. After

ordering the genes in each cluster with MN, 3 and 3 distinct patterns are observed

in cluster 1 and 2, respectively. These patterns are identical with the patterns

identified by FRAG GALK, shown in Fig. 3.2-d.

The only shortcoming of MN is observed in identifying useful patterns for clus-

95

tering solutions of CLICK, using Herpes data. As mentioned in Section 3.5.1,

Herpes data is clustered in 1 group (Fig. 4.3-a) of 101 genes and 5 singleton genes,

using CLICK. Fig 4.3-b) and Fig 4.3-c) compares the gene ordering performance of

MN and FRAG GALK in clustering solution of CLICK. Although, some subclus-

ters are identified using visual display (Fig. 4.3-b), but it is clear from the display

that the gene ordering is not optimal for MN as compared to FRAG GALK. The

ordering performed by MN is based on local decisions not on global decisions like

FRAG GALK and hence, ordering is not impressive for a large cluster containing

101 genes. However the performance of MN is satisfactory for 5 clusters identified

by K-means, containing 48, 32, 10, 12, and 4 genes for Herpes data.

4.5 Conclusion

A new measure called Maxrange, for evaluating the distance between genes, and

a new Minimal Neighbor gene ordering algorithm are described in this chapter.

These are used for efficiently ordering the genes in terms of their expression values

for microarray datasets, as well as in individual clusters found by partitive clus-

tering methods for that data sets. The available measures for gene distance, like

Manhattan Distance, Euclidean distance, and Pearson correlation, use only one

normalization factor (1, 1, and standard deviation respectively) for all types of ex-

periments, although the expression values may differ by orders of magnitude from

one kind of experiment to another. As a consequence, the distance between genes

may not be properly reflected in these measures for microarray data having different

types of experiments. In contrast, normalization is performed separately with dif-

ferent normalizing factors for the different types of experiment in our Maxrange-M

and Maxrange-E distances. This makes it suitable for both single type and multiple

type of experiments. As basic distance measure Manhattan/Euclidean distance is

used in the Maxrange for their insensitiveness to large three fold changes in the

gene expression profiles.

The existing ordering algorithms for finding the gene order using genetic algo-

rithms spend most of the time in repetitive search for the lowest value of the sum

of gene expression distances in gene groups. So, in MN, the repetitive searching for

optimal gene order in partitive clustering solutions, as well as global minimization of

distance for distant genes, are avoided. While this results in reduced time complex-

96

ity (O(n2)) for MN, in terms of biological score it is comparable with FRAG GALK

(O(n5)) and Concorde LP (O(2n)), the leading TSP solvers currently available. It is

also evident from the analysis carried out in Section 4.4 that the user may choose to

implement FRAG GALK to obtain the lowest sum of gene expression distance at a

higher computational cost versus MN to obtain equivalent biologically relevant gene

order in partitive clustering solutions with much lower computational complexity

for clusters containing less than 50 genes.

Huge number of different types of experiment are conducted over genes to find

functional correlation between them, by different research groups all over the world.

In future more experiments are likely to be appended with the existing microarray

data. This demands a distance measure like Maxrange-M, and growing number of

genes for the same microarray data sets require fast ordering algorithm like MN. It

is evident from the experimental results that the Maxrange-M with MN performs

the best in such situations. As such, this combination seems to be a promising tool

for microarray and gene expression related experiments.

Chapter 5

Combining Multi-Source

Information through Functional

Annotation based Weighting:

Gene Function Prediction in Yeast

5.1 Introduction

In the previous chapters, microarray analysis is performed for gene function predic-

tion by analyzing coexpression relationships in a high-throughput fashion. While

gene expressions are excellent tools for hypothesis generation, they alone often lack

the degree of specificity needed for accurate gene function prediction. This improve-

ment in specificity can be achieved through the incorporation of heterogeneous bio-

logical data in an integrated analysis [111]. Increasing quantities of high-throughput

biological data have become available in recent years. Many of these, such as pheno-

typic profiles [20], gene expression microarrays [31], protein sequences [73], KEGG

pathway [55], protein-protein interaction data [95, 97], protein phylogenetic pro-

files [80] and Rosetta Stone sequence [72] assess functional relationships between

genes on a large scale. These high-throughput data can be the key to assign accurate

functional annotation to a significant number of unclassified genes [111].

The value of combining informations, obtained from different methods, for gene

function predictions, has been illustrated by several studies [73, 111]. Marcotte et

97

98

al. [73] predicted many potential protein functions for Saccharomyces cerevisiae

based on a heuristic combination of different types of data, where confidence lev-

els for protein-protein links are defined subjectively on a case-by-case basis. Von

Mering et al. [74] first developed quantitative methods to measure functional rela-

tionship among genes from three different sources of information (including gene

fusion, chromosomal proximity and phylogenetic profiles) and predicted functional

modules by using a clustering algorithm. In [111], heterogeneous data sources are

integrated in Bayesian network approach and functional modules are predicted by

using a clustering algorithm based on the principle of KNN algorithm. The network

is constructed on some independence assumptions about different data sources and

uses conditional probability tables based on information elicited from yeast experts.

Lee et al. [62] compared different classes of data (including functional links extracted

through literature search) and integrated them by using Bayesian Score. In this ap-

proach, all available log likelihood scores, derived from the various data sets and

lines of evidences, are added to find a combined similarity. Spirin and Mirny [106]

developed algorithms to analyze the structural properties of a predicted interaction

network to identify the subsets of genes that are densely connected among them-

selves, but sparsely connected with others. Yanai and Delisi [126] predicted gene

links by combining three different types of links through the union operation. The

gene modules predicted by all these studies have shown some level of consistency

with the well-established biological concepts as described in MIPS [38], KEGG [55],

and other public data-bases.

In spite of the remarkable power and potential to address inferential processes,

there are some inherent limitations in Bayesian networks. The problem centers

around the quality and extent of the prior beliefs used in Bayesian inference pro-

cessing. A Bayesian network is only as useful as the reliability of this prior knowl-

edge. An excessively optimistic or pessimistic expectation of the quality of these

prior beliefs will distort the entire network and invalidate the result.

While most of the works regarding data source integration are based on Bayesian

network, the approach of integrating information from data sources in a linear

combination style through functional annotation based weights, is still unexplored.

Moreover, all the pre-mentioned works do not incorporate transitive nature of pro-

tein homology and KEGG pathway similarity extraction excluding Yeast genes.

99

In this investigation, we present a new computational framework, using functional

annotation based weighting, for the prediction of gene function in yeast through

phenotypic profile similarity, gene expression similarity, protein similarity by tran-

sitive homology, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway

similarity, interacting protein information and evaluation of these information by

MIPS [38] gene annotation. The novelty of our method lies in the way of estimat-

ing the weights in a linear combination style, using gene annotations in Eq. 5.7

(described in Section 5.2.3). In a related work, Lee et al. [62] used a single free

parameter for estimating weights where they pointed out that a heuristic modifi-

cation to the strict Bayesian approach performs better for integrating the diverse

functional linkage data sets by incorporating the relative weighting of the data (see

supplementary material of [62]). In this approach, all available log likelihood scores

derived from the various data sets are added with a rank-order dependent weighting

scheme. The resulting weighted sum (WS), scoring the functional linkage between

a pair of genes, is calculated as:

WS =
n∑

i=1

Li

Di−1
, (5.1)

where L represents the log likelihood score for the gene linkage from a single

data set, D is a free parameter (weight) roughly representing the relative degree

of dependence between the various data sets, and i is the rank index in order of

descending magnitude of the n log likelihood scores for the given gene pair. The

free parameter D ranges from 1 to α, and is chosen to optimize overall performance

(positive predictive value (PPV) and coverage) on the functional benchmark. In

this method it is not possible to have equal weights for any two data sources for D >

1. Moreover, here the weights follow a strict geometric series, which in most cases

will not reflect the relative importance of the data sources. All these limitations are

not present in our proposed method. The method and some of the results presented

in this chapter have been reported in [93,94].

5.2 Methods

We mainly focus on integrating phenotypic profiles, microarray gene expression,

KEGG pathway related protein database in Protein Information Resource (PIR)

100

[35], protein sequence similarity by transitive homology, and protein-protein interac-

tion information as data sources. The main steps of our methodology for predicting

gene functions can be summarized as:

S1) Extract pairwise similarity of genes, obtained from different data sources (see

Section 5.2.1).

S2) Separately re-score the similarities in a common framework of Yeast GO-Slim:

Process annotations (see Section 5.2.2).

S3) Integrate the re-scored similarities from different data sources through the

proposed scoring framework (see Section 5.2.3) and calculate the combined

score.

S4) For each gene g, form a cluster comprising that gene and its K nearest neigh-

bors using the proposed score and predict the function of g by noting the func-

tional enrichment of the cluster using MIPS annotation (see Section 5.2.4).

Each of the above steps are discussed in detail in the following subsections. In

brief, in the proposed scoring framework, the weights of the re-scored similarities

from different data sources are determined by adaptively maximizing the PPV

of the score, using Yeast GO-Slim process annotations [30] of known genes. The

weighting scheme enables all possible weighting (including equal and zero weighting)

of data sources by first assigning each data source a weight that varies from 0 to

α and then optimizing the weights using an objective function, involving the PPV

between gene pairs using Yeast GO-Slim process annotation. The aim is to predict

gene function from clustering solutions, rather than obtaining detailed interaction

relationships among the genes. Our method predicts the functional categories of 12

unclassified Yeast genes from 12 clusters with 98.20 PPV . We also observed that

even a small proportion of classified (annotated) genes can provide improvements

in predicting true positive gene pairs. Moreover, for evaluating the results further,

we merged the available annotations from Yeast GO-Slim process and MIPS for all

the genes, and then split the genes into independent training and test sets. The

training set is used to determine the weights, while the independent test set is used

to compute the PPV and to evaluate the gene pairs and clustering results. The

process is repeated 10 times and the cross-validation result is reported.

101

5.2.1 Data Sources and Similarity Extraction Techniques

Here we describe the different data sources and their respective similarity extraction

techniques.

Phenotypic Profile

Recently, Brown et al. [20] presented a method for the global analysis of the func-

tion of genes in budding yeast. The method is based on hierarchical clustering of

the quantitative sensitivity profiles of the 4756 strains with individual homozygous

deletion of all nonessential genes, with each gene replaced by a cassette containing

a 20-mer molecular barcode’ unique for each deletion mutant. They showed the

method to be superior than other global methods for identifying function of genes

involved in various DNA repair, damage checkpoint pathways, and other interro-

gated functions. Analysis of the phenotypic profiles of the 51 diverse treatments

places a total of 860 genes of unknown function in clusters with genes of known

function. We use this complete phenotypic profile data for quantitative phenotypic

profile similarity extraction with Pearson correlation [20].

Let X = x1, x2, · · · , xk and Y = y1, y2, · · · , yk be the phenotypic profiles of

two genes obtained over a series of k different treatments. Using centered Pearson

correlation, the similarity between genes X and Y is defined as

PcX,Y =
1

k

k∑
i=1

(
xi − X

σX

)(
yi − Y

σY

)
(5.2)

where X and σX are the mean and standard deviation of the gene X, respec-

tively. σX is defined as

σX =

√√√√1

k

k∑
i=1

(xi − X)2. (5.3)

The Pearson correlation has value between -1 and 1, where 1 indicates a linear

relationship between the two vectors.

When the phenotypic profile data set is downloaded from the website it is found

that out of 51 treatments some treatments are missing for some genes (strains).

For the subsequent analysis to be as informative as possible, it is essential that the

missing values have to be estimated in order to analyze the available data and the

102

estimates for the missing values are as accurate as possible. Currently, there is no

state-of-the-art missing value estimation method for phenotypic profiles. Alterna-

tively, missing values in phenotypic profiles can be estimated using the methods

that are used for microarray gene expression. In this phenotypic profile data set, all

the genes with more than 50% missing values are first eliminated from the dataset.

Thereafter for the remaining genes missing values are estimated using LSimpute [8]

software, described in Section 1.6.1.

Gene Expression

We use the All Yeast [31,119] data for gene expression similarity extraction. Brown

et al. [20] have shown that even with 30 distinct biological conditions for gene

expression, GO term ribosome biogenesis (GO:0007046) tends to dominate gene

pairs implicated by coexpression. As we have already used phenotypic profiles,

which implicate gene relationships over a broad range of biological processes, here we

only use the widely studied All yeast data. The missing value estimation procedure

is similar to that described in Section 3.3.2. Here also we use centered Pearson

correlation for extracting gene expression similarity in a similar way as mentioned

in the previous section.

KEGG pathway

The pathway information for genes in KEGG [55] can be utilized as a reference

for functional reconstruction. All the protein sequences, except Yeast proteins,

corresponding to each pathway (121 pathways in the second level) are downloaded

from PIR [35]. Profile vector for each protein in Yeast is computed by comparing its

sequence across 121 pathway databases, using BLAST [4]. The method is similar

to phylogenetic profile [80] construction, where, each pathway database is replaced

by all proteins within a species. The pathway profiles of genes, computed using

KEGG pathway databases, are denoted as KEGG profiles.

To find the similarity between two genes using KEGG profiles, we used the ratio

of dot product value and OR value between two profiles. The similarity matrix has

a highest similarity value of 1. Hence, the similarity values, obtained by all pair-

wise comparison, have a dynamic range from 0 to 1. Note that, the genes, whose

protein sequences are not available, are assigned a pathway profile similarity value

103

of 0 w.r.t. all other genes (proteins).

Protein Sequence

Comparing the protein sequences presents an alternative prominent approach for

gene annotation and analysis. Sequence-based comparative analysis also proved

crucial for deciphering functions of genes and proteins. As the proteins are products

of coding regions (open reading frames) of the genes, the integration of expression

data similarity with protein sequence similarity for gene analysis could potentially

provide new insights into the relation between gene functions. Protein similarity

information is one of the major components of biological knowledge, which contains

mostly known and validated protein (or gene) relations. Intuitively one can assume

that all the protein relations arising from direct protein similarity search is available

in the literature and will not help in predicting functions for unclassified genes in a

widely studied organism like Yeast. As compared to direct protein similarity search,

the field of searching gene/protein similarity through phylogenetic profiles (PP) [80],

Rosetta Stone sequence (RS) [72], and transitive homology [78] are relatively new

methods and with increasing number of fully sequenced genomes the search space

of these methods are increasing rapidly. In this investigation, transitive homologues

are used instead of PP and RS, for extracting protein similarity, as its accuracy is

reported to be higher than PP and RS in literature [70, 125]. To detect transitive

homologues by the third intermediate sequence, 37,66,477 protein sequences are

downloaded from UniProt [10].

Transitive homology detection method [70,78,125] works by searching the query

sequence against the database with a conservative threshold to find the closely

homologous sequences and using these homologous sequences as seeds to search the

database to find remotely homologous sequences with a less conservative threshold.

The method has been shown to be close to the profile [80] based methods and better

than a direct pairwise homology search [78]. Our findings are in agreement with

[125] that, this homology transitivity can be used as the main source for gene pairing

and predicting functions of unknown genes. To find the transitive homologues,

homology comparisons are performed among target proteins and 37,66,477 proteins

downloaded from UniProt [10], by using BLASTP in BLAST [4]. Before comparison

all the yeast proteins are removed from the downloaded database. Let the similarity

between two protein sequences A and B be BA,B. The value BA,B is replaced by

104

BA,C × BC,B if there exists a sequence C such that BA,C × BC,B is larger than

the current value of BA,B. This transformation takes advantage of the transitive

homology of sequences A and B through the intermediate sequence C, assuming

that sequences A and C and sequences B and C are independently homologous [70].

For example, consider the transitive homology between sequence a and sequence b

through the third sequence c. The E-values between sequence a and sequence c,

sequence c and sequence b, as well as sequence a and sequence b are 0.01, 0.005, and

20 respectively. The protein similarities Ba,c, Bc,b, and Ba,b are 0.8, 0.9, and 0.2

respectively. The homology between sequence a and sequence b cannot be detected

with their direct E-value. However, the value of Ba,b is assigned to 0.8× 0.9 = 0.72

because of the transitive sequence homology.

Instead of storing raw BLAST score as the similarity between two protein se-

quences, we use the metric of ProClust [81] where the metric value scales from 0

to 1. It is the ratio of the raw BLAST score of the sequence alignments to the

raw BLAST score of one of those two sequences aligned to itself. Here also the

genes, whose protein sequences are not available, are assigned a transitive protein

similarity value of 0 w.r.t. all other genes.

Protein-Protein Interaction

Protein-protein maps promise to reveal many aspects of the complex regulatory

network underlying cellular function [74]. For this study, manually curated cata-

logues of known protein-protein interactions are downloaded from BioGRID [95]

and binary interactions are used as the common unit of analysis. For a given pair

of genes/proteins the similarity value is 1 or 0, indicating a interaction present or

absent, respectively. Since the similarity value scales from 0 to 1, its normaliza-

tion is unnecessary. The BioGRID database/catalogue includes more than 90000

interactions by combining results obtained from synthetic lethality, affinity capture,

two-hybrid, epistatic miniarray profile, reconstituted complex, co-crystal structure,

co-purification, dosage rescue, phenotypic enhancement, phenotypic suppression,

synthetic growth defect, co-fractionation, biochemical activity, synthetic rescue,

and protein-peptide based experiments. The related references are available in Bi-

oGRID.

105

5.2.2 Scoring the Similarities in a Common Framework

Our working hypothesis is that each set of data has an intrinsic error rate and a

limited coverage but informs us to some extent about the tendency for genes to

operate in the same cellular systems and biological processes in the cell. We can

therefore construct a more accurate and extensive functional coupling between yeast

genes across a broad set of data (experiments). The prerequisite of this strategy

is that we have a unified scoring scheme for testing the heterogeneous data sets,

even when the data sets are accompanied by their own intrinsic scoring schemes

(such as Pearson Correlation for phenotypic profile and gene expression). This re-

scoring by a single criterion allows us to directly measure the relative merit of each

data set, and then to integrate the data sets with weights that reflect this merit.

In this regard, the similarities arising from various heterogeneous data sources are

separately re-scored, based on the common framework of Yeast GO-Slim process

annotations of genes in the SGD database [30]. Genes/proteins that occur in the

same process are presumed to be functionally linked. The proportion of true positive

(TP) gene pairs at a particular similarity value (computed from a data source) can

be used as a single criterion for re-scoring the similarity values, where TP gene pairs

are defined as pairs of genes i and j, such that genes i and j have an overlapping

(explicit or implicit) GO (Gene Ontology) term annotation. In [111] proportion of

TP pairs (positive predictive value (PPV)) is defined as

PPV =
no. of pairs predicted by method that share common GO term assignment

total no. of pairs predicted by method
.

(5.4)

The hierarchical nature of GO and multiple inheritance in the GO structure

can lead to evaluation problems if we consider only the particular GO term with

which a gene is annotated [111]. To alleviate this problem, we consider the SGD

Yeast GO-Slim process annotations, where every gene is annotated in the same

level without any tree based structure. For every gene g, that has undergone Yeast

GO-Slim process annotation, a vector

V (g) = (v1, v2, · · · , vj) (5.5)

106

is used to represent its category (Yeast GO-slim process) status, where j is the

number of categories. The value of vj is 1 if gene g is in the jth category; otherwise

is zero. Based on the information about categorization, the positive predictive value

(PPV) at a given similarity value, can be defined as

PPV =

∑n
i=1

∑j
m=1(V (gi)m × V (gir)m)

n
, (5.6)

where
∑j

m=1(V (gi)m×V (gir)m) = 1 if
∑j

m=1(V (gi)m×V (gir)m) ≥ 1, gi and gir form

a gene-pair, n is the number of annotated gene pairs at a given similarity value,

and V (gi)m represents the mth entry of vector V (gi).

The PPV can be interpreted as being proportional to the accuracy of the data

sources and their ability to predict the cellular/biological processes involved at a

given similarity value. In PPV a gene pair is considered as a predicted pair if both

the genes in the pair are classified in Yeast GO-Slim process. According to Yeast

GO-Slim process and MIPS, there are 6069 and 6131 annotated genes (ORFs) for

yeast of which 4387 and 4737 genes, respectively, are classified to some biological

or functional process and the remaining genes are unclassified.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Similarity Value−−−−−>

po
si

tiv
e

pr
ed

ic
tiv

e
va

lu
e

(P
PV

)−
−−
−−
−>

Transitive homology
KEGG Pathway profile
Microarray
Phenotypic Profile

Figure 5.1: Comparing the re-scored similarity values for different types of data
sources to obtain equivalency in the common framework of Yeast GO-Slim process
annotations. The positive predictive values (PPV) versus the similarity values are
plotted for each data source.

Figure 5.1 compares the similarity values obtained from different data sources

107

in terms of their PPV . The PPV for intermediate similarity values, that are not

plotted in Fig. 5.1, are calculated from the slopes of the respective curves. The

similarities extracted from protein-protein interactions are binary relations in our

study. Therefore, PPV for protein-protein interactions has a constant value 0.69

at a similarity value of 1 and hence it is not shown in Fig. 5.1.

5.2.3 New Framework for Data Source Integration

As the similarities computed from different data sources are re-scored (see Section

5.2.2) on a single criterion and common framework of Yeast GO-Slim process anno-

tations, they are directly comparable and can be integrated even when the natures

of experiments are distinct (e.g., comparing phenotypic profiles to protein-protein

interactions). The PPV reflect the accuracy of similarity values, but do not pro-

vide any information about importance/weight of one data source in presence of

the other data sources, in predicting gene pairs. Consequently, it will be more

appropriate and better if

1. PPV of each data source, in presence of other data sources, is separately

weighed by a factor and then integrated;

2. factors are dependent on the PPV of the integrated PPV of different data

sources.

Such an attempt is made in this article with a new score where, PPV computed

from phenotypic similarity (Pp), gene expression similarity (Pm), KEGG pathway

profile similarity (Kp), protein similarity through transitive homologue (B), and

protein-protein interaction information (I) between two genes X and Y are inte-

grated through weights a, b, c, d, and e in a linear combination style. This score is

referred to as Biological Score (BS) and is defined as

BSX,Y =
a × PpX,Y + b × PmX,Y + c × KpX,Y + d × BX,Y + e × IX,Y

a + b + c + d + e
(5.7)

where a, b, c, d, and e are varied within range 0 to α in steps of 1 to find a

combination that maximizes the PPV for a user defined number of top gene pairs.

Note that, the weights a, b, c, d, and e are assigned to the complete PPV matrices

calculated from individual data sources. The following can be stated about the

score:

108

1. 0 ≤ BSX,Y ≤ 1

2. BSX,Y = BSY,X (symmetric).

The proposed scoring framework for data source integration, in Eq. 5.7, is

based on data source weighting where the re-scored similarity spaces, available

from different data sources, are adaptively transformed using a set of weighting

coefficients. Intuitively, more important similarity spaces should be assigned larger

weights than less important ones, while irrelevant ones should be assigned zero

weight. Although the proposed framework has some common working principle

with feature weighting (FW) [121], it cannot be categorized as FW because what

is computed using BS is the pair-wise gene similarities and not the set of features

of any individual gene.

Estimation of Weights for Maximization of PPV : We maximize the PPV , using

Yeast GO-Slim process annotations, for top gene pairs by varying the weights a, b,

c, d, and e in the BS (Eq. 5.7). For each set of values of a, b, and c, the top gene

pairs are identified with a gold standard cut-off value. Our gold standard cut-off

value and gold standard of top gene pairs are determined from KEGG pathway

profiles, which provides 26432 gene pairs with similarity value 1 and constant PPV

of .81. These gene pairs are the most accurate of all, whereas the accuracy (PPV)

of other data sources, as well as gene pairs below top 26432 for KEGG pathway

profiles, vary considerably. We now use the following steps to estimate the weight

factors a, b, c, d, and e in the Biological Score:

S1) All the factors are assigned an initial value of 1.

S2) BS values are calculated for all the gene pairs and sorted in descending order

to identify the cut-off value above which the top 26432 gene pairs are available.

S3) PPV is calculated for the top 26432 gene pairs.

S4) The weight factors are now varied in steps of 0.1 and the steps from S2 to S3

are repeated to find a combination of weights for which the PPV is maximized.

Note that, experiments are also conducted by assigning a value of 0 to the

different weight factors and then varying them. Figure 5.2 shows how PPV , using

Yeast GO-Slim process, varies for different values of weight factors ranging from 0

109

0 10 20 30 40 50 60 70 80 90 100
0.65

0.7

0.75

0.8

0.85

0.9

Value of weights for different data sources−−−−−>

Po
sit

ive
 pr

ed
ict

ive
 V

alu
e (

PP
V)

 us
ing

 B
S−

−−
−−
−>

varying c(weight of KEGG pathway profile). a=1.3, b=3.7, d=30.1, e=1.2
varying d(weight of Transitive homology). a=1.3, b=3.7, c=0, e=1.2
varying a(weight of Phenotypic Profile). b=3.7, c=0, d=30.1, e=1.2
varying e(weight of Protein−protein Interaction). a=1.3, b=3.7, c=0, d=30.1
varying b(weight of Microarray). a=1.3, c=0, d=30.1, e=1.2

Figure 5.2: Comparing the values of PPV using BS, by varying weights of PPV
of different data sources for top 26432 gene pairs. When a particular weight is
varied the other weights are kept constant at the values shown in the figure. The
curves obtained with c=0 indicate the instances when KEGG pathway profile is not
included in the integration process.

to 100, in steps of 1. The curves show instances where one weight factor is varied

and the other weight factors are kept constant.

5.2.4 Gene Function Prediction

For biological function prediction of each gene, a cluster comprising that gene and

its K nearest neighbors is computed using the proposed score (BS). The function

for each gene is predicted from the top K neighbors and selecting a gold standard

BS cut-off value obtained from KEGG pathway profiles using MIPS October 2005

classification. The gene clustering method is denoted as K-BS, where each gene

is considered once for its function prediction and allows its neighbor genes to be

a member of multiple gene clusters. This clustering method, based on K nearest

neighbors of each gene, is already used in previous related investigations of Marcotte

et al. [73] and Troyanskaya et al. [111]. As Yeast GO-Slim process annotations was

used for determining the weights of the data sources, 510 different MIPS (October

2005) functional categories are used to evaluate the biological significance of the

110

clusters generated by our K-BS. One or several predominant functions are then

assigned to each cluster and the target gene (the gene whose K nearest neighbors,

using BS as a similarity value, are considered to form the cluster) by calculating the

P-values for different functional categories. The probability (P-value) of observing

at least m genes from a functional category within a cluster of size n is given by

P = 1 −
m−1∑
i=0

(
f

i

)
·
(

N − f

n − i

)
(

N

n

) (5.8)

where f is the total number of genes within a functional category and N is the

total number of genes within the genome (6131).

5.3 Results

As Yeast GO-Slim process was used for determining the weights of the data sources,

MIPS annotation is now used to evaluate the performance of BS. Genes and their

corresponding proteins are denoted by different symbols or identifiers in different

data sources. data source integration requires that all genes/proteins are denoted

according to a common naming scheme. We mapped genes from different resources

to their MIPS identifier. Genes/proteins that could not be mapped to their MIPS

identifier are eliminated. Our gold standard PPV of top gene pairs is now changed

and determined from KEGG pathway profiles, which provides 26432 gene pairs with

constant PPV of .8874, using top level classification of MIPS annotation. In this

section, first we present the comparisons of our method with Lee et al.’s [62] proba-

bilistic network and individual data sources in Section 5.3.1. Influence of number of

classified genes on the proposed scoring framework is demonstrated in Section 5.3.2.

In Section 5.3.3 various paremeters involved in the clustering method and the bio-

logical significance of some clusters are addressed. Finally, the performance of BS

and some comparisons based on independent training (estimating weight factors)

and test set with null intersection are presented in Section 5.3.4.

111

5.3.1 Comparative Performance of Methods and Data Sour-

ces

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

x 10
4

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of top relations−−−−−>

P
P

V
−−
−−
−−

>

Transitive homology
KEGG Pathway profile
Lee et al. Prob. Network
Microarray
Phenotypic Profile
Biological Score
Prob. Network using same data sources

Figure 5.3: Comparison between the Biological Score (BS), Lee et al.’s Probabilis-
tic Network, and individual data source in terms of PPV versus the number of top
gene pairs. While, the available annotations (using vector V (g) in Eq. 5.5) from
Yeast GO-Slim process is used to train the weighting factors in BS and ‘Proba-
bilistic Network using same data sources’, the available annotations from MIPS are
used to evaluate (using PPV) the gene pairs of all the methods and data sources.

In order to demonstrate the power of data source integration, we compare the

PPV of gene pairs identified by the BS (Proposed scoring framework for data

source integration) with those identified by the individual data sources. Since the

112

proposed method (BS) uses GO annotations for adapting its weights, it is not used

for performing the comparisons. Rather, the MIPS annotation of classified genes is

used (Fig. 5.3). We sorted the similarity values computed from Biological Score

(BS), phenotypic profiles, gene expression, KEGG profiles, and protein similarity

from transitive homology in descending order, and drew a curve for top gene pairs

verses PPV from the sorted data for each form of data source. In contrast, PPV for

protein-protein interactions has a constant value of 0.69 and not shown in Fig.5.3.

We found that the curve of BS is above the other curves. Moreover, the top 26432

gene pairs has an PPV greater than the gold standard KEGG pathway profiles.

The gene pairs are also reasonably distinct from gene pairs of KEGG pathway pro-

files. It demonstrates that the proposed Biological Score achieved higher PPV

by combining similarities from multiple sources. Similarities supported by diverse

forms of sources are more likely to be correct. This highlights the merit of data

source integration. Figure 5.3 also compares the performance of BS and ‘final log

likelihood scores’ of Lee et al.’s probabilistic network (downloaded from the web-

site mentioned in [63]) in terms of PPV with MIPS annotation. The curve of Lee

et al.’s probabilistic network is drawn from top 34,000 gene pairs, as mentioned

in [62]. For a direct comparison between our method and the probabilistic network,

we implemented the probabilistic network as described in Lee et al. using the same

datasources as in Biological Score (BS) and plotted the respective curve in Fig. 5.3.

From the figure it is clear that the top gene pairs identified in this investigation

is better than any other existing network or data sources. The above statement is

true not only for gold standard 24632 gene pairs but also for top 80000 gene pairs

which can be used further for any gene network or gene function prediction. We

found that beyond top 80000 gene pairs the performance of our method is gradually

converging to the performance of probabilistic network (with same data sources)

but, it does not hampers the superior performance of our method as only a fraction

of top gene pairs are generally used [62] for gene function or network prediction.

It is also evident from the results that the choice of data sources is a very impor-

tant factor in data source integration. For example, protein homology and KEGG

profile individually performs better than probabilistic network and considered as

two important data sources in the proposed BS. The top 1, 00, 000 gene pairs pre-

dicted by our method with PPV above 0.755 (not shown in the data) are available

in http://www.isical.ac.in/˜scc/Bioinformatics/AdS/toprelation.txt in tabular (tab

113

delimited) form. The PPV computed from individual data source are also shown

in the file.

5.3.2 Influence of Number of Classified Genes on Functional

Annotation based Weighting

10 20 30 40 50 60 70 80 90
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Percentage of classified genes in SGD−−−−−>

PP
V
−−
−−
−−

>

Figure 5.4: Variation of PPV , using BS, with nine different percentages of classified
genes.

Here we study how the increase in the number of classified genes in Yeast GO-

Slim affects the PPV for the classified genes in MIPS for top 26432 gene pairs using

BS. We found that even with 20% of classified genes the estimated values of a, b, c,

d, and e, in maximizing PPV , differs by an amount of 1 than the estimated values

with 90% of classified genes. Hence, the value of PPV also varies by an amount of

0.02 to 0.03 with classified genes ranging from 20% to 90%. Fig. 5.4 shows that

the percentage of classified genes clearly has a limited contribution to the accuracy

(PPV) of the BS. Thus BS may also be successfully used for organisms where the

number of classified genes is as low as 20%.

114

5.3.3 Gene Function Prediction based on Clustering Re-

sults

Genes (open reading frames) are considered to be linked if they are among the 10

closest neighbors within a given distance or similarity cut-off [73]. The biological

function for each gene is predicted from the cluster consisting the top 10 neighbors

of that gene by selecting K to be at most 10 and BS cut-off value of 0.77. Above this

cut-off value the gold standard PPV of 0.8874 is achieved for 36033 gene pairs using

the MIPS October 2005 classification. We found several clusters to be significantly

enriched with genes of a similar function. Clusters with P-values greater than 10−5

are not reported.

To predict a genes function from it’s neighbor genes we use the following steps:

S1) 2507 clusters are identified with at-least three or more members by selecting

K = 10 and with BS gold standard cut-off value 0.77.

S2) Out of these clusters, 1915 clusters are identified with functional enrichment

in one or more categories and P-values less than 10−5.

S3) From functionally enriched clusters we predict the functions of 1855 classified

and 60 unclassified genes by assigning the function related with the small-

est P -value. This ignores the possibility that a gene may be assigned more

than one highly significant function, but in practice resulted in more accurate

predictions than if multiple functions are allowed per cluster.

The functions of 1855 classified genes are predicted with 95.16 PPV . In general

we can say that the possibility of 60 unclassified Yeast genes to match with the pre-

dicted functions is 95.16%. The functional enrichment, in one or more categories, for

clusters intended for 60 unclassified yeast genes are available in tabular form (tab de-

limited file) at http://www.isical.ac.in/˜scc/Bioinformatics/AdS/unclassifiedpredi-

ction.xls. The function with the smallest P -value in the table represents the pre-

dicted function for the unclassified gene, and the three values in the parenthesis

denote the function related P -value, function related no. of genes in the cluster, and

the function related no. of genes in the genome, respectively. The table also includes

all the genes within each cluster, the PPV (between target gene and the neighbor

gene) arising from various data sources, and the BS values. A table with similar

115

format, containing the predicted functions of 1855 classified yeast genes is available

at http://www.isical.ac.in/˜scc/Bioinformatics/AdS/classifiedprediction.xls.

Out of 60 unclassified genes, YEL041W and YDR459C are now (April 2007)

classified in MIPS, and our function predictions for these two genes are in agree-

ment with present MIPS classification. YEL041w and its four neighbors YJR049C,

YPL188W, YDR226W, and YER170W form a cluster. From the functional enrich-

ment of the cluster we predict that YEL041w is related with the category ‘phosphate

metabolism’ as the four remaining genes belong to this category. The prediction is

right according to MIPS (April 2007) classification with p-value 1.42 × 10−6. We

further manually analyze the cluster and predict that the gene YEL041w may be re-

lated with category ‘metabolism of vitamins, cofactors, and prosthetic groups’ and

‘homeostasis’ since it’s two top neighbor genes YJR049C and YPL188W is related

with these categories. While the prediction of the category ‘metabolism of vita-

mins, cofactors, and prosthetic groups’ is a correct (MIPS 2007) one, the prediction

‘homeostasis’, may be a novel one for YEL041w. Moreover, according to MIPS,

YEL041w has the highest similarity to YJR049C, which is related to homeostasis

of metal ions (Na, K, Ca etc.).

The cluster containing gene YDR459C and its ten neighbor genes, YOL003C,

YNL326C, YLR246W, YPR193C, YIR042C, YMR127C, YNL035C, YBL052C, YD-

R126W and YPR051W shows functional enrichment in categories ‘protein mod-

ification’ (8 out of 11, P -value 1.16 × 10−6), ‘modification with fatty acids (e.g.

myristylation, palmitylation, farnesylation)’ (4 out of 11, P -value 2.3 × 10−7) and

‘modification by acetylation, deacetylation’ (4 out of 11, P -value 4.4 × 10−6). We

correctly predict that YDR459C is related to ‘modification with fatty acids’. The

hierarchical nature of MIPS annotation automatically ensures that YDR459C is re-

lated to ‘protein modification’, which is placed at one level higher than ‘modification

with fatty acids’. Although the remaining function, ‘modification by acetylation,

deacetylation’, is also significant in terms of P -value, YDR459C is not related with

this function and our results are in agreement with our approach of considering the

function involving the lowest P -value. The cluster also contains three unclassified

(MIPS 2007 classification) genes YDR126W, YIR042C, and YNL035C. Although

the cluster is not intended to predict the function of these three genes we can assume

that these genes may be related with the function ‘protein modification’.

116

Table 5.1: Top 12 function predictions of unclassified gene at BS cut-off value of
0.77

Unclassified Functional P -value Genes Genes
Gene category within within

cluster category
YIL080W ABC transporters 2.2204e-16 8 28
YLR057W modification with sugar residues 2.2871e-14 8 67
YHR218W DNA topology 0 9 52
YHR219W DNA topology 0 10 52
YIL170W C-compound and 1.3656e-14 8 63

carbohydrate transport
YDR441C purin nucleotide/nucleoside/ 6.7724e-15 8 58

nucleobase metabolism
YCL074W TRANSPOSABLE ELEMENTS, 3.3307e-16 8 34

VIRAL AND PLASMID PROTEINS
YBL112C DNA topology 0 10 52
YLR464W DNA topology 2.6645e-15 8 52
YMR010W modification with sugar residues 0 9 67

(e.g. glycosylation, deglycosylation)
YIL067C vesicle fusion 2.2204e-16 9 32

YHR049W metabolism of secondary products derived 3.3307e-16 7 19
from glycine, L-serine and L-alanine

Our top predictions consist the function of 12 unclassified (MIPS 2007) and 417

classified genes at BS cut-off value 0.77, and P -value cut-off 1×10−13. At these cut-

off values, the functions of the classified genes are predicted with 98.20 PPV . Table

5.1 summarizes the top 12 predicted functions for 12 unclassified genes. For each

of the predicted functions, the related p-values, no. of related genes in the cluster

and the genome, is also shown in the table. Each of the clusters contain 11 genes

and they are available in the table representing 60 clusters for function prediction

of unclassified genes. since four of the 12 clusters show functional enrichment in a

single category of ‘DNA topology’, we analyze these clusters manually. We observe

that 15 classified (YBL113c, YDR545w, YEL077c, YER190w, YGR296w, YHL050c,

YIL177c, YJL225c, YLL066c, YLL067c, YLR466w, YLR467w, YNL339c, YPL283c,

and YPR204w), 4 unclassified (YHR218W, YHR219W, YBL112C, and YLR464W)

and 2 recently deleted (YEL076C and YPR203W) genes are distributed in these

clusters with 80% genes in common. We further perform clustering with K-BS by

selecting K = 20 to find if these four clusters merge to form a single cluster. After

clustering, all the 21 genes are found in the same cluster, which shows functional

enrichment in categories ‘CELL CYCLE AND DNA PROCESSING’ (15 out of 19,

P -value 1.53 × 10−10), ‘DNA processing’ (15 out of 19, P -value 7.02 × 10−15) and

117

’DNA topology’ (15 out of 19, P -value 2.38×10−30). Our analysis predicts that the

four unclassified genes are very likely to be involved in the above mentioned pro-

cesses. On examination of the literature for 4 unclassified genes, we find that their

involvement in DNA processing and DNA topology is likely due to their relation to

helicase-proteins [30, 102]. These proteins play important roles in various cellular

processes including DNA replication, DNA repair, RNA processing, chromosomal

segregation, and maintenance of chromosome stability. It has been well known

that the amino acid sequences of these proteins contain several conserved motifs,

and that the open reading frames (ORFs) which encode helicase-related proteins

make up several gene families [102]. While YHR218W encodes helicase-like protein

within the telomeric Y’ element, YHR219W encodes protein that is similar to heli-

cases and contains telomeric short Y’ element [30]. YBL112C and YLR464W also

contain helicase-encoding repetitive sequence and lies within TEL02L (subtelomeric

region next to the telomeric repeats) and TEL12R, respectively.

5.3.4 Evaluation Based on Independent Training and Test

Sets

The performance of the proposed integration method relies critically on Yeast GO-

Slim process annotations in order to determine the weights of the data sources in the

training process and its evaluation depends on MIPS annotation in the test process.

But to perform a fair evaluation, the training and test set should be independent

with null intersection. In this regard, we also experimented with an alternative

method based on cross-validation. First, we merged the available annotations (using

vector V (g) in Eq. 5.5) from Yeast GO-Slim process and MIPS for all the genes,

and then split the genes (with annotation vectors) into independent training and

test sets. Because data are integrated using weights derived only from the training

set, the performances measured on the remaining test benchmark are expected to be

free from circular logic and memorization of the annotation set during the training

procedure. Moreover, the KEGG pathway profile dataset is now excluded from the

datasource integration procedure as pathway information may be a bit redundant

with functional annotations available in MIPS and Yeast GO-Slim process.

We randomly separated the set of 6,072 genes into 2 disjoint training and test

subsets of 3,036 genes each. All links among genes within the same training subset

118

are calculated and then used for training the weights. Similarly, all links among

genes within the same test subset are calculated, with neither links nor genes shared

between the training and test sets. The calculation of weights for data source

integration and all other steps prior to the final assessment of BS, are performed

using only the training set. The final assessment is performed on the independent

test set. The cross-validation procedure is repeated 10 times and the performance

of BS is evaluated.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
4

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of top relations−−−−−>

P
P

V
−−
−−
−−

>

BS (Biological Score)
Transitive homology
Lee et al. Probabilistic Network
Microarray
Phenotypic Profile
Prob. Network using same data sources

Figure 5.5: Comparison between the Biological Score (BS), Lee et al.’s Proba-
bilistic Network, and individual data source in terms of PPV versus the number
of top gene pairs. The available annotations (using vector V (g) in Eq. 5.5) from
Yeast GO-Slim process and MIPS are first merged for all the genes, and then the
genes (with annotation vectors) are randomly splited into disjoint training and test
sets. While, the training set is used to determine the weighting factors in BS and
‘Probabilistic Network using same data sources’, the test set is used to evaluate
(using PPV) the gene pairs of all the methods and data sources.

Fig. 5.5 shows the curves comparing BS and individual data sources in terms

of PPV for top gene pairs, in one of the cross-validation procedures. Similar

119

curves are obtained when the cross-validation procedure is repeated. The curves

show that BS performs better than Lee et al.’s Probabilistic Network and indi-

vidual data source. In clustering solutions using K-BS, on average 800 clusters

are identified with functional enrichment in one or more categories by selecting

K to be at most 10, BS cut-off value 0.77, and P-values less than 10−5, by re-

peating the cross-validation procedure. From functionally enriched clusters, on

average we predict the functions of 500 classified genes with 96.2 PPV and 300

unclassified genes by assigning the function related with the smallest P -value. In

one of the cross-validation process (out of 10 repetitions), functions of 516 classi-

fied yeast genes are predicted with 97.1 PPV from 516 clusters. For the purpose

of illustration, the predicted functions of 516 classified yeast genes are uploaded

at http://www.isical.ac.in/˜scc/Bioinformatics/AdS/classifiedpredictionreview.xls.

The PPV s reported here are higher (on average 96.2) than that reported (on aver-

age 95.16) in Section 5.3.3 because, a part of Yeast GO-Slim process annotations,

which on average have more genes in each functional process than pure MIPS an-

notations, are now included in the cluster evaluation procedure.

5.4 Conclusion

In the study made in this chapter, we proposed a framework for data source inte-

gration that combines information from different sources to predict gene functions.

We employed functional annotation based weighting of data sources through an-

notations of classified genes to predict gene pairs for yeast from five data sources,

namely, phenotypic profiles, gene expression data, KEGG profiles, protein-protein

interaction and protein sequence similarity through transitive homologues. Func-

tional categories of 60 unclassified (MIPS October 2005) Yeast genes and 1855

classified genes are predicted with 95.16 PPV . Evaluation on the predicted gene

pairs confirmed the validity and potential value of the proposed framework for gene

function prediction.

Although a neighbor based clustering method needs a user defined neighbor

number, from this investigation we find that K-BS is a highly accurate and efficient

gene function annotation tool. The system integrates heterogeneous biological in-

formation in a functional annotation based weighting framework, leading to more

biologically accurate gene groupings, which can be used for gene function predic-

120

tion. The flexibility of the system allows for easy inclusion of other data sources by

first benchmarking them, and then adaptively estimating the individual weights.

Furthermore, one can examine the proposed framework on a larger test-bed by

including similarities arising from gene-fusion and gene-order conservation based

methods.

Chapter 6

Conclusions and Scope for Further

Research

The area of life sciences has experienced explosive growth in terms of research

and advances in bioinformatics, of which microarray technology is one of the most

promising tools. The advances in microarray technologies have resulted in a sig-

nificant increase in the amount of genomic data. It enables the monitoring of the

expression levels of thousands of genes simultaneously. Due to the large quantity

of information available from microarray experiments, it is necessary to employ

advanced computational methods for classification of the data in order to obtain

initial conclusions about the biological functions and pathways related to the genes.

The rationale for applying computational methods to facilitate the understanding

of various biological processes mainly includes:

• To provide a more global perspective in experimental design

• To capitalize on the emerging technology of database-mining : the process by

which testable hypotheses are generated regarding the function, pathway or

structure of a gene or protein of interest by identifying similar expression or

sequences in well characterized organisms.

While gene ordering in partitive clustering framework and dynamic range based

normalization are successfully investigated in Chapter 2 and 3, respectively, to

provide a more global perspective in experimental design, multiple heterogeneous

data sources are integrated with microarray gene expression data to capitalize on

121

122

the emerging technology of database-mining through which testable hypotheses are

generated regarding the function of a gene or protein.

An overview of conventional GAs and the relevance of TSP to handle microarray

gene ordering problem efficiently is provided in Chapter 2. GAs appear to be a very

powerful artificial intelligence paradigm to handle the combinatorial optimization

problems. There are three general characteristics that might appear to limit the

effectiveness of GAs. First, the basic selection, crossover and mutation operators

are common to all applications; so researches are now focussed to design problem

specific operators to get better results. Second, a GA requires extensive experi-

mentation for the specification of several parameters so that appropriate values can

be identified. Third, GAs involve a large degree of randomness and different runs

may produce different results; so it is necessary to incorporate the problem specific

domain knowledge into GA to reduce randomness and computational time. In this

direction, an algorithm called FRAG GALK is developed in Chapter 2 for solving

the TSP and gene ordering problem by incorporating domain specific information

in GAs.

The FRAG GALK, along with its two new operators - ‘nearest fragment opera-

tor’ (NF) and a modified version of order crossover operators (MOC), are described

in Chapter 2. The NF reduces the limitation of Nearest Neighbor (NN) heuristic

in path construction by determining the optimum number of fragments in terms of

the number of cities and then greedily reconnecting them. Although the fragment

reconnection is performed on local decisions, the random slicing of chromosomes

(in GA) into optimum number of fragments, augments the search space quickly

and helps FRAG GALK in obtaining the global optimal solutions to some of the

MGO problems and TSPLIB [116] instances; the largest having 13,509 cities. It

will be worthwhile to test the performance of NF and FRAG GALK on larger TSP

instances. For solving larger TSP instances it may be necessary to connect the

fragments on global decisions, i.e.,

a) checking the fitness of the connected fragments before accepting them as a

solution, and

b) searching for chromosomes with higher fitness by connecting all possible com-

binations of fragments and not by greedily connecting them on local decisions.

123

The modified version of order crossover operator (MOC) handles the indefinite com-

putational time due to random length of substring and its random insertion in or-

der crossover. This is done by systematically determining an appropriate substring

length from the parent chromosome for performing crossover. While the position

of the substring in the parent chromosome is chosen randomly, the insertion of the

substring is performed in the position of the last deleted city in another parent chro-

mosome. Thus NF and MOC operators are capable of aligning more genes with the

same group next to each other compared to other algorithms, thereby producing

better gene ordering for FRAG GALK.

The representation used in FRAG GALK is a direct one (integer i= city/gene i)

and also used in all other state-of-the-art TSP solvers using genetic algorithm and

LK heuristic based approaches. An indirect representation, like offset-based rep-

resentation, in general takes more computational time in representation, whereas,

there is no chance for improving the solution quality over optimal results for most

of the TSP instances.

Although there is a rich literature on gene ordering in hierarchical clustering

framework for gene expression analysis, outside the framework of hierarchical clus-

tering, previously, different gene ordering algorithms are applied on the whole data

set and the domain of partitive clustering remained unexplored with gene ordering

approaches. To the best knowledge of the author, the investigation reported in

Chapter 3, is the first work on addressing and evaluating the importance of gene

ordering in partitive clustering framework. A method for optimally ordering the

genes within clusters, obtained from partitive clustering methods, is presented in

Chapter 3. The rationale for ordering genes in partitive clustering solution is to

regain the relationship among the genes within clusters, which are generally lost

for partitive clustering methods. There are several ways in which one can extend

the results presented in this investigation. One interesting open problem is the

automatic identification of clusters from gene ordering results. Current research is

going on this direction. Another interesting (though more theoretical) problem is

the extension of the ordering algorithm for a two dimensional clustering solution,

where the goal is to order both the rows and the columns of the resulting outcome

simultaneously.

124

Throughout the last decade, visual display of gene expression patterns has

proven to be a useful tool for gene expression analysis. The utility of visual display

is extended from clustering approaches to gene ordering methods. In Chapter 3,

its utility is further extended in identifying useful patterns from ordered genes in

partitive clustering solutions. Several examples on microarray gene expression data

reveals that the results of integrating gene ordering with partitive clustering are su-

perior to the results obtained using only partitive clustering methods. Moreover, the

method requires less computation time and in certain cases provides better results

than leaf ordering in a hierarchical clustering framework, proposed by Bar-Joseph

et al. It is also evident from our investigation that the method not only regains

the relationship among genes, but also helps to identify subclusters of functionally

correlated genes by means of visual display (heat map) of gene expression patterns.

Since the available measures for gene distance, like Manhattan Distance, Eu-

clidean distance, and Pearson correlation, use only one normalization factor (1, 1,

and standard deviation, respectively) for all types of experiments, gene expression

values in lower dynamic range do get dominated by those with higher dynamic range

in computation of gene expression distance. To overcome this situation, normaliza-

tion of gene expression data with experiment specific linear dynamic range of photo

multiplier tube is performed in the first part of Chapter 4. The over-sensitivity of

Pearson correlation to large three fold changes (peaks) in gene expression profiles

is handled with Manhattan distance. The above mentioned normalization process

along with Manhattan distance is defined as Maxrange-M distance and its effec-

tiveness is demonstrated in finding biologically meaningful gene order. Superiority

of Maxrange-M to related distance measures and normalization processes are ex-

tensively established with widely studied microarray gene expression data.

Relationship between genes often exists by locally similar patterns rather than

globally similar patterns in their expression profiles. That is, the complete profiles

share similar sub-profiles, which might furthermore be time-shifted. Apart from

that, often not all genes respond to all conditions (or time points) in an experi-

ment. In that case, the use of a global similarity measure, i.e., the computation of a

similarity degree between the complete expression profiles, will not reveal the rela-

tionship between two genes, simply because this degree might be rather small [11].

Extension of Maxrange-M distance in finding local and time shifted distance be-

125

tween gene expression profiles will be an interesting application towards further

work.

A new algorithm called Minimal Neighbor (MN), for computationally effective

gene ordering is developed in the second part of Chapter 4 (Section 4.3.4). As

mentioned in Section 2.3.1, the nearest neighbor (NN) tour construction heuristic

is a common choice in TSP to construct the initial solutions. It has O(n2) time

complexity and contains only a few severe mistakes in edge construction. Conse-

quently, some concepts of NN heuristic are incorporated in the MN algorithm to

achieve biologically meaningful gene ordering in short computation time. Though

MN may not be optimal in terms of the summation of gene expression distances like

FRAG GALK (as evident from Table 4.2 and visual display from Fig. 4.3-b), from

the biological scores (Table 4.4) and t-test results (Table 4.9), it is evident that

MN provides biologically comparable gene order with respect to FRAG GALK for

all datasets and distance measure. More important is that the time complexity of

MN is O(n2), whereas the time complexity of FRAG GALK is O(n5), where n is

the number of genes. As mentioned in Section 4.4.3, the only shortcoming of MN

is observed in identifying useful patterns, through visual display, for a clustering

solution of CLICK, containing 101 genes of Herpes data. However the performance

of MN, as evaluated by visual display, is satisfactory for 5 clusters identified by

K-means, containing 48, 32, 10, 12, and 4 genes for Herpes data. Therefore, it is

preferable to use MN algorithm instead of FRAG GALK for clusters containing less

than 50 genes.

The neighbor connecting procedure of MN is based on local decisions. In Step

2 of MN algorithm (described in Section 4.3.4), only the two end genes of the new

array are considered and two closest genes for each of them are searched from the

remaining genes. An improvement of this step can be performed by considering

two groups of gene (from the ordered genes) at the two ends of the new array and

the average expression profile of each group can be used for searching closest gene.

Obviously an open problem will be how to define the size of the group. A possible

solution is to assign a user defined threshold of homogeneity and include all the

genes in the group that satisfy the criterion.

One of the important goals of biological investigation is to predict the function

of unclassified gene. Since in a model organism like Yeast, there are more than

126

1000 genes with unknown biological function defined in Munich Information for

Protein Sequences (MIPS) and Saccharomyces Genome Database (SGD), Yeast is

an automatic choice for gene function prediction. Although the high-throughput

data achieved from microarray gene expressions can be the used to assign functional

annotations to unclassified genes, the degree of specificity, needed for accurate gene

function prediction, can be improved by integrating other data sources with gene

expressions. An approach in this direction is investigated in Chapter 5. It involves

identification of a group of K closest classified genes of an unclassified gene and

assigning the common biological function of the group to that unclassified gene. In

order to identify the group, a new methodology, called K-BS, is developed by com-

bining different sources from emerging technologies of biological database-mining.

The sources of information used in the investigation are microarray gene expres-

sions, transitive homology of protein sequences, phenotypic profiles, protein-protein

interaction and KEGG pathway profile, which are the output of technologies devel-

oped in the last decade.

The basic requirement before integration of data sources is to measure the gene

similarities on a common scoring framework. In this regard, at first, the similarities

between genes arising from different data sources are measured in the common scor-

ing framework of ‘Yeast GO-Slim: Process’ annotations. These are then integrated

in a linear combination style through a set of weights that are adaptively computed.

The scoring framework reflects the accuracy of similarity values, but does not pro-

vide any information about importance/weight of one data-source in presence of the

other data-sources in predicting gene-pairs. Consequently, assignment of appropri-

ate weights to data sources before integration is necessary and natural. The new

scoring framework, K-BS, for predicting the function of some of the unclassified

Yeast genes, not only takes care of the above mentioned issues but also predicts the

functional categories of 417 classified genes from 417 clusters with 98.20% accuracy.

Superiority of K-BS in predicting true positive gene pairs gene-pairs, as compared

with Lee et al.’s [62] YeastFinalNet in terms of positive predictive value (PPV), is

also established in Sections 5.3.1 and 5.3.4.

Since it has been found in Section 5.3.2 that even a small proportion of anno-

tated genes can provide improvements in true positive gene pairs for K-BS, it may

also be successfully used for organisms where the number of classified genes is as

127

low as 20%. If the ideal of rapid experimental characterization of all gene products

in sequenced genomes is to be achieved, future research efforts must be directed to-

ward genes not yet characterized. High-confidence predictions of gene functions will

be invaluable in suggesting such directed experimentation. K-BS offers a flexible,

general framework in which to predict and validate functional predictions for genes

and proteins. The system can be upgraded in a modular fashion to incorporate

improvements in each data source or in annotation quality or coverage, and new

developments in annotation or prediction algorithms. The approach can be used

to predict gene function in any organism. Now human data and annotations are

widely available and we believe that our approach will be valuable in directing the

experimental validation of newly proposed human gene functions. In addition, our

approach can use as input groupings of genes derived from other data sources. For

example, gene-fusion and gene-order conservation based methods could be incorpo-

rated directly into our methodology.

The most convincing demonstration of the efficacy of a predictive method is

to confirm specific predictions by de novo experimentation. Some predicted gene

functions, shown in Table 5.1, are confirmed or supported by the related literature,

while the other functions are yet to be confirmed. An important application of

K-BS will be in directing new research toward functional classes that appear to be

under-studied.

Even though the current approaches in biocomputing are very helpful in identi-

fying patterns and functions of proteins and genes, the output results are still not

perfect. The methods are not only time-consuming, requiring Unix workstations to

run on, but might also lead to false interpretations and assumptions due to neces-

sary simplifications. It is therefore still mandatory to use biological reasoning and

common sense in evaluating the results delivered by a biocomputing program. Also,

for evaluation of the trustworthiness of the output of a program it is necessary to

understand its mathematical and theoretical background to finally come up with a

use- and senseful analysis.

Other potential bioinformatics tasks, where methods developed in this thesis

can be used include

• characterization of protein content and metabolic pathways,

128

• identification of interacting proteins,

• assignment of gene products, and

• mapping expression data to sequence, structural and biochemical data.

Author’s Publications

International Journal Papers

1. S. K. Pal, S. Bandyopadhyay, and S. S. Ray. Evolutionary Computation

in Bioinformatics: A Review. IEEE Transactions on Systems, Man, and

Cybernetics, Part-C, 36(5):601–615, 2006.

2. S. S. Ray, S. Bandyopadhyay, P. Mitra, and S. K. Pal. Bioinformatics in Neu-

rocomputing Framework. IEE Proc. Circuits Devices & Systems, 152:556–

564, 2005.

3. S. S. Ray, S. Bandyopadhyay, and S. K. Pal. Genetic Operators for Com-

binatorial Optimization in TSP and Microarray Gene Ordering. Applied

Intelligence, 26(3):1830–195, 2007.

4. S. S. Ray, S. Bandyopadhyay, and S. K. Pal. Gene Ordering in Partitive

Clustering using Microarray Expressions. Journal of Biosciences, 32(5):1019–

1025, 2007.

5. S. S. Ray, S. Bandyopadhyay, and S. K. Pal. Dynamic Range Based Distance

Measure for Microarray Expressions and a Fast Gene Ordering Algorithm.

IEEE Transactions on Systems, Man, and Cybernetics, Part-B, 37(3):742–

749, 2007.

6. S. S. Ray, S. Bandyopadhyay, and S. K. Pal. Combining Multi-Source In-

formation through Functional Annotation Based Weighting: Gene Function

Prediction in Yeast. IEEE Transactions on Biomedical Engineering, 2008

(under revision).

129

130

International Conference Papers

1. S. S. Ray, S. Bandyopadhyay, P. Mitra, and S. K. Pal. Bioinformatics in

Neurocomputing Framework. The International Conference on Computers

and Devices for Communication, CODEC-04, page 94, January 1-3, Kolkata,

India, 2004.

2. S. S. Ray, S. Bandyopadhyay, and S. K. Pal. New Operators of Genetic Algo-

rithms for Traveling Salesman Problem. The 17th International Conference

on Pattern Recognition, ICPR-04 volume 2, pages 497–500, Cambridge, UK,

23-26 August 2004.

3. S. S. Ray, S. Bandyopadhyay, and S. K. Pal. New Genetic Operators for Solv-

ing TSP: Application to Microarray Gene Ordering. The First International

Conference on Pattern Recognition and Machine Intelligence, PReMI 2005,

pages 617-622, December, Kolkata, India, 2005.

4. S. S. Ray, S. Bandyopadhyay, and S. K. Pal. Gene Ordering in Partitive

Clustering using Microarray Expressions. International Conference on Bioin-

formatics, INCOB 2006, page 33, 18-20 December, New Delhi, 2006.

5. S. S. Ray, S. Bandyopadhyay, and S. K. Pal. New Distance Measure for Mi-

croarray Gene Expressions using Linear Dynamic Range of Photo Multiplier

Tube. Int. Conf. on Computing: Theory and Applications, Kolkata, India,

pages 337–341, 2007.

6. S. S. Ray, S. Bandyopadhyay, and S. K. Pal. Predicting Gene Function in

Yeast through Adaptive Weighting of Multi-Source Information. The Eighth

International Conference on Systems Biology, ICSB 2007, online proceedings,

no. H03, October 1-6, Long Beach, California, USA, 2007.

Bibliography

[1] T. Akutsu, S. Miyano, and S. Kuhara. Identification of Genetic Networks from

a Small Number of Gene Expression Patterns under the Boolean Network

Model. Proc. Pacific Symposium on Biocomputing, 99:17–28, 1999.

[2] A. A. Alizadeh and M. B. Eisen et al. Distinct types of diffuse large B-cell

lymphoma identified by gene expression profiling. Nature, 403(6769):503–511,

2000.

[3] R. B. Altman, A. Valencia, S. Miyano, and S. Ranganathan. Challenges for

intelligent systems in biology. IEEE Intelligent Systems, 16(6):14–20, 2001.

[4] S. F. Altschul, T. L. Madden, A. A. Schffer, J. Zhang, Z. Zhang, W. Miller,

and D. J. Lipman. Gapped blast and psi-blast: a new generation of protein

database search programs. Nucleic Acids Research, 25(17):3389–3402, 1997.

[5] D. Applegate, R. Bixby, V. Chvtal, and William Cook. Concorde package. [on-

line]. www.tsp.gatech.edu/concorde/downloads/codes/src/ co031219.tgz, 2003.

[6] D. Applegate, W. Cook, and A. Rohe. Chained Lin-Kernighan for large

traveling salesman problems. Technical report, Dept. Comput. Appl. Math.,

Rice Univ., July 2000.

[7] M. Ashburner, C. A. Ball, J. A. Blake, D. Botstein, H. Butler, J. M. Cherry,

A. P. Davis, K. Dolinski, S. S. Dwight, J. T. Eppig, M. A. Harris, D. P.

Hill, L. Issel-Tarver, A. Kasarskis, S. Lewis, J. C. Matese, J. E. Richardson,

M. Ringwald, G. M. Rubin, and G. Sherlock. Gene ontology: tool for the

unification of biology. the gene ontology consortium. Nat Genet., 25(1):25–

29, 2000.

131

132

[8] T. H. B, B. Dysvik, and I. Jonassen. Lsimpute: accurate estimation of missing

values in microarray data with least squares methods. Nucleic Acids Research,

32(3: e34):online, 2004.

[9] Y. Bai, W. Zhang, and Z. Jin. An new self-organizing maps strategy for solving

the traveling salesman problem. Chaos, Solitons & Fractals, 28(4):1082–1089,

2006.

[10] A. Bairoch, R. Apweiler, C. H. Wu, W. C. Barker, B. Boeckmann, S. Ferro,

E. Gasteiger, H. Huang, R. Lopez, M. Magrane, M. J. Martin, D. A. Natale,

C. O’Donovan, N. Redaschi, and L. S. Yeh. The universal protein resource

(uniprot). Nucleic Acids Research, 33(Database issue):D154–159, 2005.

[11] R. Balasubramaniyan, E.Hullermeier, N. Weskamp, and J. Kamper. Clus-

tering of gene expression data using a local shape-based similarity measure.

Bioinformatics, 21(7):10691077, 2005.

[12] P. Baldi and S. Brunak. Bioinformatics: The Machine Learning Approach.

MIT Press, Cambridge, MA, 1998.

[13] S. Bandyopadhyay and S. K. Pal. Classification and Learning Using Genetic

Algorithms: Applications in Bioinformatics and Web Intelligence. Springer-

Verlag, Hiedelberg, Germany, 2007.

[14] Z. Bar-Joseph, D. K. Gifford, and T. S. Jaakkola. Fast optimal leaf ordering

for hierarchical clustering. Bioinformatics, 17:2229, 2001.

[15] Y. Barash and R. Friedman. Context-specific Bayesian clustering for gene

expression data. J. Computational Biology, 9:169191, 2002.

[16] A. Ben-Dor, R. Shamir, and Z. Yakhin. Clustering gene expression patterns.

J. Computational Biology, 6:281297, 1999.

[17] J. L. Bentley. Fast Algorithms for Geometric Traveling Salesman Problems.

ORSA Journal on Computing, 4(4):387–411, 1992.

[18] T. Biedl, B. Brejov, E. D. Demaine, A. M. Hamel, and T. Vinar. Optimal

arrangement of leaves in the tree representing hierarchical clustering of gene

expression data. Technical Report 2001-14, Dept. Computer Sci., Univ. Wa-

terloo, 2001.

133

[19] S. Brenner, F. Jacob, and M. Meselson. An unstable intermediate carrying

information from genes to ribosomes for protein synthesis. Nature, 190:576–

581, 1961.

[20] J. A. Brown, G. Sherlock, C. L. Myers, N. M. Burrows, C. Deng, H. I. Wu,

K. E. McCann, O. G. Troyanskaya, and J. M. Brown. Global analysis of

gene function in yeast by quantitative phenotypic profiling. Molecular System

Biology, 2(2006.0001):1–9, 2006.

[21] Michael P. S. Brown, W. N. Grundy, D. Lin, N. Cristianini, C. W. Sugnet,

T. S. Furey, M. A. Jr., and D. Haussler. Knowledge-based analysis of mi-

croarray gene expression data by using support vector machines. Proc Natl

Acad Sci U S A, 97(1):262–267, 2000.

[22] R. J. Cho, M. J. Campbell, E. A. Winzeler, L. Steinmetz, A. Conway, L. Wod-

icka, T. G. Wolfsberg, A. E. Gabrielian, D. Landsman, D. J. Lockhart, and

R. W. Davis. A genome-wide transcriptional analysis of the mitotic cell cycle.

Molecular Cell, 2(1):65–73, 1998.

[23] P. Chou and G. Fasmann. Prediction of the secondary structure of proteins

from their amino acid sequence. Advances in Enzymology, 47:145–148, 1978.

[24] G. A. Churchill. Using anova to analyze microarray data. Biotechniques,

37(2):173–175, 2004.

[25] W. S. Cleveland and S. J. Devlin. Locally weighted regression: An approach

to regression analysis by local fitting. Journal of the American Statistical

Association, 83:596–610, 1988.

[26] C. Cotta, A. Mendes, V. Garcia, P. Franca, and P. Moscato. Applying

memetic algorithms to the analysis of microarray data. Evo Workshops, pages

22–32, 2003.

[27] J. S. d. Sousa, L. d. C. T. Gomes, G. B. Bezerra, L. N. d. Castro, and

F. J. V. Zuben. An immune-evolutionary algorithm for multiple rearrange-

ments of gene expression data. Genetic Programming and Evolvable Machines,

5(2):157–179, 2004.

134

[28] L. Davis. Applying adapting algorithms to epistatic domains. Proc. Int. Joint

Conf. Artificial Intelligence, Quebec, canada, 1985.

[29] P. Dhaeseleer, S. Liang, and R. Somogyi. Genetic network inference: From

co-expression clustering to reverse engineering. Bioinformatics, 16:707726,

2000.

[30] S. S. Dwight, M. A. Harris, K. Dolinski, C. A. Ball, G. Binkley, K. R.

Christie, D. G. Fisk, L. Issel-Tarver, M. Schroeder, G. Sherlock, A. Sethu-

raman, S. Weng, D. Botstein, and J. M. Cherry. Saccharomyces genome

database (sgd) provides secondary gene annotation using the gene ontology

(go). Nucleic Acids Research, 30(1):69–72, 2002.

[31] M. B. Eisen, P. T. Spellman, P. O. Brown, and D. Botstein. Cluster analysis

and display of genome-wide expression patterns. Proc. National Academy of

Sciences, 95:14863–14867, 1998.

[32] G. Sherlock et al. The stanford microarray database. Nucleic Acids Research,

29(1):152–155, 2001.

[33] L. Shi et. al. Microarray scanner calibration curves: characteristics and im-

plications. BMC Bioinformatics, 6((Suppl2):S11):1–14, 2005.

[34] V. R. Iyer et al. The transcriptional program in the response of human

fibroblasts to serum. Science, 283(5398):83–87, 1999.

[35] W. C. Barker et al. The protein information resource (pir). Nucleic Acids

Research, 28(1):41–44, 2000.

[36] C. N. Fiechter. A parallel tabu search algorithm for large traveling salesman

problems. Discrete Appl. Math. Combin. Oper. Res. Comput. Sci., 51:243–

267, 1994.

[37] V. Filkov, S. Skiena, and J. Zhi. Analysis techniques for microarray time-series

data. J. Comput. Biol., 9:317330, 2002.

[38] Munich Information for Protein Sequences. http://www.mips.com.

[39] N. Gale, W. C. Halperin, and C. Costanzo. Unclassed matrix shading and

optimal ordering in hierarchical cluster analysis. J. Classif., 1:7592, 1984.

135

[40] D. Gamboa, C. Rego, and F. Glover. Implementation analysis of efficient

heuristic algorithms for the traveling salesman problem. Computers & Oper-

ations Research, 33(4):1154–1172, 2006.

[41] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to

the Theory of NP-completeness. W. H. Freeman and Co., San Francisco, 1979.

[42] A. P. Gasch and M. B. Eisen. Exploring the conditional coregulation of

yeast gene expression through fuzzy k-means clustering. Genome Biology,

3(11):research0059.1–0059.22, 2002.

[43] M. Gerstein and R. Jansen. The current excitement in bioinformatics-analysis

of whole-genome expression data: how does it relate to protein structure and

function? Curr. Opin. Struct. Biol., 10:574584, 2000.

[44] D. Gillespie and S. Spiegelman. A quantitative assay for dna-rna hybrids with

dna immobilized on a membrane. J. Molecular Biology, 12(3):829–842, 1965.

[45] D. E. Goldberg. Genetic Algorithm in Search, Optimization and Machine

Learning. Machine Learning, Addison-Wesley, New York, 1989.

[46] W. S. Gossett. The probable error of a mean. Biometrika, 6:1–25, 1908.

[47] G. Gruvaeus and H. Wainer. Two additions to hierarchical cluster analysis.

British J. Math. Statist. Psychol., 25:200206, 1972.

[48] K. Helsgaun. An effective implementation of the Lin-Kernighan traveling

salesman heuristic. European Journal of Operational Research, 1:106–130,

2000.

[49] R. Herwig, A. J. Poustka, C. Muller, C. Bull, H. Lehrach, and J. OBrien.

Large-scale clustering of cDNA-fingerprinting data. Genome Res., 9:10931105,

1999.

[50] A. Homaifar, S. Guan, and G. Liepins. A new approach on the traveling

salesman problem by genetic algorithms. 5th Int. Conf. Genetic Algorithms,

pages 460–466, 1993.

[51] R. G. Jenner, M. M. Alb, C. Boshoff, and P. Kellam. Kaposi’s sarcoma-

associated herpesvirus latent and lytic gene expression as revealed by dna

arrays. Journal of Virology, 75(2):891–902, 2001.

136

[52] L. Jiao and L. Wang. A novel genetic algorithm based on immunity. IEEE

Transactions on Systems, Man and Cybernetics, Part A, 30(5):552–561, 2000.

[53] D. S. Johnson and L. A. McGeoch. The Traveling Salesman Problem: A Case

Study in Local optimization. Local Search in Combinatorial Optimization,

Wiley and Sons, New York, 1996.

[54] S. C. Johnson. Hierarchical clustering schemes. Psychometrika, 2:241–254,

1967.

[55] M. Kanehisa, S. Goto, M. Hattori, K. F. Aoki-Kinoshita, M. Itoh,

S. Kawashima, T. Katayama, M. Araki, and M. Hirakawa. From genomics to

chemical genomics: new developments in kegg. Nucleic Acids Res., 34:D354–

D357, 2006.

[56] S. Kawasaki, C. Borchert, M. Deyholos, H.Wang, S. Brazille, K. Kawai,

D. Galbraith, and H. J. Bohnert. Gene expression profiles during the ini-

tial phase of salt stress in rice. Plant Cell, 13(4):889906, 2001.

[57] M. K. Kerr, M. Martin, and G. A. Churchill. Analysis of variance for gene

expression microarray data. Journal of Computational Biology, 7(6):819–837,

2000.

[58] J. Khan, J. S. Wei, M. Ringnr, L. H. Saal, M. Ladanyi, F. Westermann,

F. Berthold, M. Schwab, C. R. Antonescu, C. Peterson, and P. S. Meltzer.

Classification and diagnostic prediction of cancers using gene expression pro-

filing and artificial neural networks. Nature Medicine, 7(6):673–679, 2001.

[59] T. Kohonen. The self-organizing map. Proc. IEEE, 78(9):1464–1480, 1990.

[60] E. F. Krause. Taxicab Geometry: An Adventure in Non-Euclidean Geometry.

1986.

[61] P. Larranaga, C. Kuijpers, R. Murga, I. Inza, and S. Dizdarevic. Genetic

algorithms for the traveling salesman problem: A review of representations

and operators. Artificial Intell. Rev., 13:129–170, 1999.

[62] I. Lee, S. V. Date, A. T. Adai, and E. M. Marcotte. A probabilistic functional

network of yeast genes. Science, 306:1555–1558, 2004.

137

[63] I. Lee, R. Narayanaswamy, and E. M. Marcotte. Yeast Gene Analysis, chapter

: Bioinformatic prediction of yeast gene function. Elsevier Press, Amsterdam,

2006.

[64] S. K. Lee, Y. H. Kim, and B. R. Moon. Finding the Optimal Gene Order in

Displaying Microarray Data. GECCO, pages 2215–2226, 2003.

[65] S. Lin and B. W. Kernighan. An effective heuristic for the traveling salesman

problem. Operation Research, 21(2):498–516, 1973.

[66] D. J. Lockhart and E. A. Winzeler. Genomics, gene expression and dna arrays.

Nature, 405(6788):827–836, 2000.

[67] J. A. Love. Introduction to microarray technology. Whitehead Institute Center

for Microarray Technology, pages 1–23.

[68] C. Lu. Improving the scaling normalization for high-density oligonucleotide

genechip expression microarrays. BMC Bioinformatics, 5(103), 2004.

[69] N. M. Luscombe, D. Greenbaum, and M. Gerstein. What is Bioinformat-

ics? A Proposed Definition and Overview of the Field. Yearbook of Medical

Informatics, pages 83–100, 2001.

[70] Q. Ma, G. W. Chirn, R. Cai, J. D. Szustakowski, and N. Nirmala. Clustering

protein sequences with a novel metric transformed from sequence similarity

scores and sequence alignments with neural networks. BMC Bioinformatics,

6(242), 2005.

[71] J. B. MacQueen. Some methods for classification and analysis of multivariate

observations. In In Proc. of the 5th Berkeley Symposium on Mathematical

Statistics and Probability (ed. L. M. LeCam and J. Neyman), volume 1, pages

281–297, University of California Press, Los Angeles, CA, 1967.

[72] E. M. Marcotte, M. Pellegrini, H. L. Ng, D. W. Rice, T. O. Yeates, and

D. Eisenberg. Detecting protein function and protein-protein interactions

from genome sequences. Science, 285:751–753, 1999.

[73] E. M. Marcotte, M. Pellegrini, M. J. Thompson, T. O. Yeates, and D. Eisen-

berg. A combined algorithm for genome-wide prediction of protein function.

Nature, 402:83–86, 1999.

138

[74] C. V. Mering, R. Krause, B. Snel, M. Cornell, S. G. Oliver, S. Fields, and

P. Bork. Comparative assessment of large-scale data sets of protein-protein

interactions. Nature, 417:399–403, 2002.

[75] B. J. T. Morgan and A. P. G. Ray. Non-uniqueness and inversions in cluster

analysis. Applied Statistics, 44(1):117–134, 1995.

[76] I. Oliver, D. Smith, and J. Holland. A study of permutation crossover opera-

tors on the traveling salesman problem. Second Int. Conf. Genetic Algorithms,

pages 224–230, 1987.

[77] S. K. Pal, S. Bandyopadhyay, and S. S. Ray. Evolutionary computation in

bioinformatics: A review. IEEE Transactions on Systems, Man, and Cyber-

netics, Part-C, 36(5):601–615, 2006.

[78] J. Park, K. Karplus, C. Barrett, R. Hughey, D. Haussler, T. Hubbard, and

C. Chothia. Sequence comparisons using multiple sequences detect three times

as many remote homologues as pairwise methods. J Mol Biol, 284:1201–1210,

1998.

[79] P. Pavlidis. Using anova for gene selection from microarray studies of the

nervous system. Methods, 31(4):282–289, 2003.

[80] M. Pellegrini, E. M. Marcotte, M. J. Thompson, D. Eisenberg, and T. O.

Yeates. Assigning protein functions by comparative genome analysis: protein

phylogenetic profiles. Proc. Natl. Acad. Sci. USA, 96:4285–4288, 1999.

[81] P. Pipenbacher, A. Schliep, S. Schneckener, A. Schonhuth, D. Schomburg,

and R. Schrader. Proclust: improved clustering of protein sequences with an

extended graph-based approach. Bioinformatics, 18(2):S182S191, 2002.

[82] J. Y. Potvin. The traveling salesman problem: A neural network perspective.

ORSA J. Comput., 5:328–348, 1993.

[83] J. Qian, M. Dolled-Filhart, J. Lin, H. Yu, and M. Gerstein. Beyond syn-

expression relationships: local clustering of time-shifted and inverted gene

expression profiles identifies new, biologically relevant interactions. J. Mol.

Biol., 314:10531066, 2001.

139

[84] J. Quackenbush. Microarray data normalization and transformation. Nature

Genetics, 32:496–501, 2002.

[85] S. S. Ray, S. Bandyopadhyay, P. Mitra, and S. K. Pal. Bioinformatics in

neurocomputing framework. IEE Proc. Circuits Devices & Systems, 152:556–

564, 2005.

[86] S. S. Ray, S. Bandyopadhyay, and S. K. Pal. Gene ordering in partitive

clustering using microarray expressions. International Conference on Bioin-

formatics, INCOB 2006, page 33, 18-20 December, New Delhi, 2006.

[87] S. S. Ray, S. Bandyopadhyay, and S. K. Pal. New operators of genetic algo-

rithms for traveling salesman problem. volume 2, pages 497–500, Cambridge,

UK, 23-26 August 2004. ICPR-04.

[88] S. S. Ray, S. Bandyopadhyay, and S. K. Pal. New genetic operators for solving

tsp: Application to microarray gene ordering. In First Int. Conf. Pattern

Recognition and Machine Intelligence (accepted), Kolkata, India, December

2005. Indian Statistical Institute, Springer.

[89] S. S. Ray, S. Bandyopadhyay, and S. K. Pal. Dynamic range based dis-

tance measure for microarray expressions and a fast gene ordering algorithm.

IEEE Transactions on Systems, Man, and Cybernetics, Part-B, 37(3):742–

749, 2007.

[90] S. S. Ray, S. Bandyopadhyay, and S. K. Pal. Gene ordering in partitive

clustering using microarray expressions. Journal of Biosciences, 32(5):1019–

1025, 2007.

[91] S. S. Ray, S. Bandyopadhyay, and S. K. Pal. Genetic operators for combina-

torial optimization in tsp and microarray gene ordering. Applied Intelligence,

26(3):1830–195, 2007.

[92] S. S. Ray, S. Bandyopadhyay, and S. K. Pal. New distance measure for

microarray gene expressions using linear dynamic range of photo multiplier

tube. Int. Conf. on Computing: Theory and Applications, Kolkata, India,

pages 337–341, 2007.

140

[93] S. S. Ray, S. Bandyopadhyay, and S. K. Pal. Combining multi-source informa-

tion through functional annotation based weighting: Gene function prediction

in yeast. IEEE Transactions on Biomedical Engineering, pages 1–7, 2008 (un-

der revision).

[94] S. S. Ray, S. Bandyopadhyay, and S. K. Pal. Predicting gene function in

yeast through adaptive weighting of multi-source information. The Eighth

International Conference on Systems Biology, ICSB 2007, (H03):63, October

1-6, Long Beach, California, USA, 2007.

[95] T. Reguly, A. Breitkreutz, L. Boucher, B. J. Breitkreutz, G. C. Hon, C. L.

Myers, A. Parsons, H. Friesen, R. Oughtred, A. Tong, C. Stark, Y. Ho, D. Bot-

stein, B. Andrews, C. Boone, O. G. Troyanskya, T. Ideker, K. Dolinski, N. N.

Batada, and M. Tyers. Comprehensive curation and analysis of global inter-

action networks in saccharomyces cerevisiae. Journal of Biology, 5(4):1–28,

2006.

[96] G. Reinelt. The Traveling Salesman: Computational Solutions for TSP Ap-

plications. Lecture Notes in Computer Science, Springer-Verlag, 840, 1994.

[97] L Salwinski, C. S. Miller, A. J. Smith, F. K. Pettit J. U. Bowie, and D. Eisen-

berg. The database of interacting proteins. Neuclic Acid Research, 32:449451,

2004.

[98] T. Sawa and L. Ohno-Machado. A neural network-based similarity index for

clustering DNA microarray data. Comput. Biol. Med., 33:115, 2003.

[99] J. setubal and J. Meidanis. Introduction to Computational Molecular Biology.

International Thomson Publishing, 20 park plaza, Boston, MA 02116, 1999.

[100] R. Sharan, A. Maron-Katz, and R. Shamir. CLICK and EXPANDER: a

system for clustering and visualizing gene expression data. Bioinformatics,

19(14):1787–1799, 2003.

[101] R. Sharan and R. Shamir. CLICK: A clustering algorithm with applications to

gene expression analysis. Int. Conf. Intelligent Systems for Molecular Biology,

page 307316, 2000.

141

[102] A. Shiratori, T. Shibata, M. Arisawa, F. Hanaoka, Y. Murakami, and T. Eki.

Systematic identification, classification, and characterization of the open read-

ing frames which encode novel helicase-related proteins in saccharomyces cere-

visiae by gene disruption and northern analysis. Yeast, 15(3):219–253, 1999.

[103] D. K. Slonim. From patterns to pathways: gene expression data analysis

comes of age. Nat. Genet. Suppl., 32:502508, 2002.

[104] E. M. Southern. Detection of specific sequences among dna fragments sepa-

rated by gel electrophoresis. J. Molecular Biology, 98(3):503–517, 1975.

[105] P. T. Spellman, G. Sherlock, M. Q. Zhang, V. R. Iyer, K. Anders, M. B. Eisen,

P. O. Brown, D. Botstein, and B. Futcher. Comprehensive identification of

cell cycle-regulated genes of the yeast saccharomyces cerevisia by microarray

hybridization. Molecular Biology Cell, 9:3273–3297, 1998.

[106] V. Spirin and L. A. Mirny. Protein complexes and functional modules in

molecular networks. Proc. Natl Acad. Sci. USA, 100(21):1212312128, 2003.

[107] T. Starkweather, S. McDaniel, K. Mathias, D. Whitley, and C. Whitley. A

comparison of genetic sequencing operators. 4th Int. Conf. Genetic Algo-

rithms, pages 69–76, 1991.

[108] T. Stutzle and M. Dorigo. ACO algorithms for the traveling salesman problem,

Evolutionary Algorithms in Engineering and Computer Science. John Wiley

and Sons, 1999.

[109] P. Tamayo, D. Slonim, J. Mesirov, Q. Zhu, S. Kitareewan, E. Dmitrovsky,

E. S. Lander, and T. R. Golub. Interpreting patterns of gene expression with

self-organizing maps: Methods and application to hematopoietic differentia-

tion. Proc. National Academy of Sciences, pages 2907–2912, 1999.

[110] O. Troyanskaya, M. Cantor, G. Sherlock, P. Brown, T. Hastie, R. Tibshirani,

D. Botstein, and R. B. Altman. Missing value estimation methods for dna

microarrays. Bioinformatics, 17(6):520–525, 2001.

[111] O. G. Troyanskaya, K. Dolinski, A. B. Owen, R. B. Altman, and D. Bot-

stein. A bayesian framework for combining heterogeneous data sources for

142

gene function prediction (in saccharomyces cerevisiae). Proc. Natl. Acad. Sci.

USA, 100(14):8348–8353, 2003.

[112] C. F. Tsai, C. W. Tsai, and T. Yang. A modified multiple-searching method

to genetic algorithms for solving traveling salesman problem. IEEE Int. Conf.

Systems, Man and Cybernetics, 3:6–9, 2002.

[113] H. K. Tsai, J. M. Yang, and C. Y. Kao. Applying Genetic Algorithms To Find-

ing The Optimal Gene Order In Displaying The Microarray Data. GECCO,

pages 610–617, 2002.

[114] H. K. Tsai, J. M. Yang, Y. F. Tsai, and C. Y. Kao. An Evolutionary Algorithm

for Large Traveling Salesman Problems. IEEE Transactions on Systems, Man

and Cybernetics, Part B: Cyebernetics, 34(4):1718–1729, 2004.

[115] H. K. Tsai, J. M. Yang, Y. F. Tsai, and C. Y. Kao. An Evolutionary Approach

for Gene Expression Patterns. IEEE Trans. on Info. Tech. in Biomedicine,

8(2):69–78, 2004.

[116] TSPLIB. http://www.iwr.uniheidelberg.de/groups/comopt/software/TSPL-

IB95/.

[117] J. Tuikkala, L. Elo, O. S. Nevalainen, and T. Aittokallio. Improving miss-

ing value estimation in microarray data with gene ontology. Bioinformatics,

22(5):566–572, 2006.

[118] D. Venet. MatArray: a Matlab toolbox for microarray data. Bioinformatics,

19(5):659–660, 2003.

[119] Website. http://rana.lbl.gov/EisenData.htm.

[120] Website. http://www.psrg.lcs.mit.edu/clustering/ismb01/optimal.html.

[121] D. Wettschereck, D. W. Aha, and T. Mohori. A review and empirical eval-

uation of feature weighting methods for a class of lazy learning algorithms.

Artificial Intelligence Review, 11(1-5):273–314, 1997.

[122] D. Whitley, T. Starkweather, and D. Fuquay. Scheduling problems and trav-

eling salesman: The genetic edge recombination operator. 3rd Int. Conf.

Genetic Algorithms, pages 133–140, 1989.

143

[123] A. S. Wu and R. K. Lindsay. A Survey of Intron Research in Genetics. In

Proc. 4th Conf. of on Parallel Problem Solving from Nature, pages 101–110,

1996.

[124] W. Wu, E. P. Xing, C. Myers, I. S. Mian, and M. J. Bissell. Evaluation of

normalization methods for cdna microarray data by k-nn classification. BMC

Bioinformatics, 6(191):1–21, 2005.

[125] H. Xie, A. Wasserman, Z. Levine, A. Novik, V. Grebinskiy, Avi Shoshan, and

Liat Mintz. Large-scale protein annotation through gene ontology. Genome

Research, 12:785–794, 2002.

[126] DeLisi C Yanai I. The society of genes: networks of functional links between

genes from comparative genomics. Genome Biology, 3(11):1–64, 2002.

[127] Y. H. Yang, S. Dudoit, P. Luu, and T. P. Speed. Normalization of cdna mi-

croarray data. In M. L. Bittner, Y. Chen, A. N. Dorsel, and E. R. Dougherty

(eds.), Microarrays: Optical Technologies and Informatics, Proc. of SPIE,

4266:141–152, 2001.

[128] M. Zachariasen and M. Dam. Tabu search on the geometric traveling salesman

problem. Proc. of Int. Conf. on Metaheuristics, pages 571–587, 1995.

144

145

Annexure (Publications)

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 36, NO. 5, SEPTEMBER 2006 601

Evolutionary Computation in
Bioinformatics: A Review

Sankar K. Pal, Fellow, IEEE, Sanghamitra Bandyopadhyay, Senior Member, IEEE, and Shubhra Sankar Ray

Abstract—This paper provides an overview of the application
of evolutionary algorithms in certain bioinformatics tasks. Differ-
ent tasks such as gene sequence analysis, gene mapping, deoxyri-
bonucleic acid (DNA) fragment assembly, gene finding, microar-
ray analysis, gene regulatory network analysis, phylogenetic trees,
structure prediction and analysis of DNA, ribonucleic acid and
protein, and molecular docking with ligand design are, first of all,
described along with their basic features. The relevance of using
evolutionary algorithms to these problems is then mentioned. These
are followed by different approaches, along with their merits, for
addressing some of the aforesaid tasks. Finally, some limitations of
the current research activity are provided. An extensive bibliogra-
phy is included.

Index Terms—Biocomputing, data mining, evolutionary algo-
rithm, molecular biology, soft computing.

I. INTRODUCTION

OVER the past few decades, major advances in the field
of molecular biology, coupled with advances in genomic

technologies, have led to an explosive growth in the biological
information generated by the scientific community. This deluge
of genomic information has, in turn, led to an absolute require-
ment for computerized databases to store, organize, and index
the data, and for specialized tools to view and analyze the data.

Bioinformatics can be viewed as the use of computational
methods to make biological discoveries [1]. It is an interdisci-
plinary field involving biology, computer science, mathematics,
and statistics to analyze biological sequence data, genome con-
tent and arrangement, and to predict the function and structure
of macromolecules. The ultimate goal of the field is to enable
the discovery of new biological insights as well as to create a
global perspective from which unifying principles in biology
can be derived [2]. There are three important subdisciplines
within bioinformatics.

1) Development of new algorithms and models to assess dif-
ferent relationships among the members of a large bio-
logical data set in a way that allows researchers to access
existing information, and to submit new information as
they are produced.

2) Analysis and interpretation of various types of data in-
cluding nucleotide and amino acid sequences, protein do-
mains; and protein structures.

Manuscript received May 7, 2004; revised January 7, 2005. This paper was
supported by the Council of Scientific and Industrial Research, New Delhi,
India, under the project “Knowledge Based Connectionist Data Mining System:
Design and Application” under Grant 22(0346)/02/EMR-II. This paper was
recommended by Associate Editor M. Last.

The authors are with the Machine Intelligence Unit, Indian Statistical Institute,
Kolkata 700108, India (e-mail: sankar@isical.ac.in; sanghami@isical.ac.in;
shubhra r@isical.ac.in).

Digital Object Identifier 10.1109/TSMCC.2005.855515

3) Development and implementation of tools that enable ef-
ficient access and management of different types of infor-
mation.

Recently, evolutionary algorithms (EAs), a class of randomized
search and optimization techniques guided by the principles of
evolution and natural genetics, have been gaining the attention
of researchers for solving bioinformatics problems. Genetic al-
gorithms (GAs) [3]–[9] evolutionary strategies (ES), and genetic
programming (GP) are the major components of EAs. Of these,
GAs are the most widely used. GAs are efficient, adaptive, and
robust search processes, producing near optimal solutions, and
have a large amount of implicit parallelism. Data analysis tools
used earlier in bioinformatics were mainly based on statistical
techniques such as regression and estimation. The role of GAs in
bioinformatics gained significance with the need to handle large
data sets in biology in a robust and computationally efficient
manner.

This paper provides a survey of the various evolutionary-
algorithm-based techniques that have been developed over the
past few years for different bioinformatics tasks. First, we de-
scribe the basic concepts of bioinformatics along with their
biological basis. Methodology for applying GAs to bioinfor-
matics tasks is also mentioned in Section II. In Section III, var-
ious bioinformatics tasks and different evolutionary algorithms
based methods available to address the bioinformatics tasks are
explained. Finally, conclusions and some future research direc-
tions are presented in Section IV.

II. BASIC CONCEPTS IN BIOINFORMATICS AND RELEVANCE

OF EVOLUTIONARY ALGORITHMS

First, we introduce the basic biological concepts required to
understand the various problems in bioinformatics, and then we
describe the relevance of EAs in bioinformatics with particular
emphasis on their application of GAs.

A. Basic Units of Cell Biology and Bioinformatics Tasks

Deoxyribonucleic acid (DNA) and proteins are biological
macromolecules built as long linear chains of chemical compo-
nents. A DNA strand consists of a large sequence of nucleotides,
or bases. For example there are more than three billion bases in
human DNA sequences. DNA plays a fundamental role in differ-
ent biochemical processes of living organisms in two respects.
First, it contains the templates for the synthesis of proteins,
which are essential molecules for any organism [10]. The sec-
ond role in which DNA is essential to life is as a medium to
transmit hereditary information (namely, the building plans for

1094-6977/$20.00 © 2006 IEEE

602 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 36, NO. 5, SEPTEMBER 2006

Fig. 1. Various parts of DNA.

proteins) from generation to generation. Proteins are responsible
for structural behavior.

The units of DNA are called nucleotides. One nucleotide con-
sists of one nitrogen base, one sugar molecule (deoxyribose),
and one phosphate. Four nitrogen bases are denoted by one
of the letters A (adenine), C (cytosine), G (guanine), and T
(thymine). A linear chain of DNA is paired to a complementary
strand. The complementary property stems from the ability of
the nucleotides to establish specific pairs (A-T and G-C). The
pair of complementary strands then forms the double helix that
was first suggested by Watson and Crick in 1953. Each strand,
therefore, carries all the information, and the biochemical ma-
chinery guarantees that the information can be copied over and
over again, even when the “original” molecule has long since
vanished.

A gene is primarily made up of a sequence of triplets of the
nucleotides (exons). Introns (noncoding sequence) may also be
present within the gene. Not all portions of the DNA sequences
are coding. A coding zone indicates that it is a template for a pro-
tein. As an example, for the human genome, only 3%–5% of the
sequence are coding; i.e., they constitute the gene. The promoter
is a region before each gene in the DNA that serves as an indica-
tion to the cellular mechanism that a gene is ahead. For example,
the codon AUG is a protein which codes for methionine and sig-
nals the start of a gene. Promoters are key regulatory sequences
that are necessary for the initiation of transcription. Transcrip-
tion is process in which ribonucleic acid (RNA) is formed from
a gene, and through translation, aminoacids are formed from
RNA. There are sequences of nucleotides within the DNA that
are spliced out progressively in the process of transcription and
translation. A comprehensive survey of the research done in this
field is given in [11]. In brief, the DNA consists of three types
of noncoding sequences (see Fig. 1) as follows:

1) Intergenic regions: Regions between genes that are ig-
nored during the process of transcription.

2) Intragenic regions (or Introns): Regions within the genes
that are spliced out from the transcribed RNA to yield the
building blocks of the genes, referred to as Exons.

3) Pseudogenes: Genes that are transcribed into the RNA and
stay there, without being translated, due to the action of a
nucleotide sequence.

Proteins are polypeptides, formed within cells as a linear
chain of amino acids [10]. Amino acid molecules bond with
each other by eleminating water molecules and forming
peptides. 20 different amino acids (or “residues”) are available,
which are denoted by 20 different letters of the alphabet. Each of
the 20 amino acids is coded by one or more triplets (or codons)
of the nucleotides making up the DNA. Based on the genetic
code, the linear string of DNA is translated into a linear string of

Fig. 2. Coding of amino acid sequence from DNA sequence.

amino acids; i.e., a protein via mRNA (messenger RNA) [10].
For example, the DNA sequence GAACTACACACGTGTAAC
codes for the amino acid sequence ELHTCN (shown in Fig. 2).

Three-dimensional (3-D) molecular structure is one of the
foundations of structure-based drug design. Often, data are
available for the shape of a protein and a drug separately, but
not for the two together. Docking is the process by which two
molecules fit together in 3-D space. Ligands are small molecules
such as a candidate drug and are used for docking to their macro-
molecular targets (usually proteins, sometimes DNA).

Different biological problems considered within the scope
of bioinformatics involve the study of genes, proteins, nucleic
acid structure prediction, and molecular design with docking. A
broad classification of the various bioinformatics tasks is given
as follows.

1) alignment and comparison of DNA, RNA, and protein
sequences;

2) gene mapping on chromosomes;
3) gene finding and promoter identification from DNA

sequences;
4) interpretation of gene expression and microarray data;
5) gene regulatory network identification;
6) construction of phylogenetic trees for studying evolution-

ary relationship;
7) DNA structure prediction;
8) RNA structure prediction;
9) protein structure prediction and classification;

10) molecular design and molecular docking.
Descriptions of these tasks and their implementation in evo-

lutionary computing (or genetic algorithmic) framework are
provided in Section III. Before that, the relevance of GAs in
bioinformatics is explained.

B. Relevance of Genetic Algorithms in Bioinformatics

Genetic algorithms [3]–[6], a biologically inspired technol-
ogy, are randomized search and optimization techniques guided
by the principles of evolution and natural genetics. They are
efficient adaptive, and robust search processes, producing near
optimal solutions, and have a large degree of implicit paral-
lelism. Therefore, the application of GAs for solving certain
problems of bioinformatics, which need optimization of com-
putation requirements, and robust, fast and close approximate
solutions, appears to be appropriate and natural [4]. Moreover,
the errors generated in experiments with bioinformatics data
can be handled with the robust characteristics of GAs. To some
extent, such errors may be regarded as contributing to genetic
diversity, a desirable property. The problem of integrating GAs
and bioinformatics constitutes a new research area.

GAs are executed iteratively on a set of coded solutions, called
population, with three basic operators: selection/reproduction,
crossover, and mutation. They use only the payoff (objective

PAL et al.: EVOLUTIONARY COMPUTATION IN BIOINFORMATICS: A REVIEW 603

function) information and probabilistic transition rules for mov-
ing to the next iteration. They are different from most of the
normal optimization and search procedures in four ways:

1) GAs work with the coding of the parameter set, not with
the parameters themselves.

2) GAs work simultaneously with multiple points, and not a
single point.

3) GAs search via sampling (a blind search) using only the
payoff information.

4) GAs search using stochastic operators, not deterministic
rules.

A GA typically consists of the following components:
1) a population of binary strings or coded possible solutions

(biol)ogically referred to as chromosomes);
2) a mechanism to encode a possible solution (mostly as a

binary string);
3) objective function and associated fitness evaluation

techniques;
4) selection/reproduction procedure;
5) genetic operators (crossover and mutation);
6) probabilities to perform genetic operations.

Of all the evolutionarily inspired approaches, GAs seem par-
ticularly suited to implementation using DNA, protein, and
other bioinformatics tasks [12]. This is because GAs are gener-
ally based on manipulating populations of bitstrings using both
crossover and pointwise mutation.

The main advantages using GAs are as follows.
1) Several tasks in bioinformatics involve optimization of

different criteria (such as energy, alignment score, and
overlap strength), thereby making the application of GAs
more natural and appropriate.

2) Problems of bioinformatics seldom need the exact opti-
mum solution; rather, they require robust, fast, and close
approximate solutions, which GAs are known to provide
efficiently.

3) GAs can process, in parallel, populations billions times
larger than is usual for conventional computation. The
usual expectation is that larger populations can sustain
larger ranges of genetic variation, and thus can generate
high-fitness individuals in fewer generations.

4) Laboratory operations on DNA inherently involve errors.
These are more tolerable in executing evolutionary al-
gorithms than in executing deterministic algorithms. (To
some extent, errors may be regarded as contributing to
genetic diversity—a desirable property.)

C. Example

Let us now discuss with an example the relevance of GAs in
bioinformatics. Most of the ordering problems in bioinformat-
ics, such as sequence alignment problem, fragment assembly
problem (FAP), and gene maping (GM), are quite similar to
traveling salesman problem (TSP best-known NP-hard ordering
problem) with notable differences. The TSP can be formally
defined as follows: Let 1, 2, . . . , n be the labels of the n cities
and C = [ci,j] be an n × n cost matrix where ci,j denotes the
cost of traveling from city i to city j. The TSP is the problem of

Fig. 3. Alignment of DNA fragments.

finding the shortest closed route among n cities, having as input
the complete distance matrix among all cities. A symmetric TSP
(STSP) instance is any instance of the TSP such that ci,j = cj,i

for all cities i, j. An asymmetric TSP (ATSP) instance is any
instance of the TSP that has at least one pair of cities such that
ci,j �= cj,i . The ATSP is a special case of the problem on which
we restrict the input to asymmetric instances. The total cost A
of a TSP tour is given by

A(n) =
n−1∑
i=1

ci,i+1 + cn,1. (1)

The objective is to find a permutation of the n cities which has
minimum cost.

The FAP deals with the sequencing of DNA. Currently,
strands of DNA longer than approximately 500 base pairs cannot
routinely be sequenced accurately. Consequently, for sequenc-
ing larger strands of DNA, they are first broken into smaller
pieces. In the shotgun sequencing method (to which this work
applies), DNA is first replicated many times, and then individ-
ual strands of the double helix are broken randomly into smaller
fragments. The assembly of DNA fragments into a consensus
sequence corresponding to the parent sequence constitutes the
“fragment assembly problem” [10]. It is a permutation problem,
similar to the TSP, but with some important differences (circular
tours, noise, and special relationships between entities) [10]. It
is NP-complete in nature.

Note that the fragmenting process does not retain either the
ordering of the fragments on the parent strand of DNA or the
strand of the double helix from which a particular fragment
came. The only information available in assembly stage is the
base pair sequence for each fragment. Thus, the ordering of the
fragments must rely primarily on the similarity of fragments and
how they overlap. An important aspect of the general sequencing
problem is the precise determination of the relationship and ori-
entation of the fragment. Once the fragments have been ordered,
the final consensus sequence is generated from the ordering. Ba-
sic steps with four fragments are shown below as an example
in Fig. 3. Here, the fragments are aligned in a fashion so that
in each column all the bases are the same. As an example, the
base in the sixth column is selected, after voting, as G to make
the consensus sequence TCACTGGCTTACTAAG.

Formulation of the FAP as a TSP using GA: although the
endpoints of the tour of TSP are irrelevant since its solution is a
circular tour of the cities, in the case of FAP, the endpoints are
relevant as they represent fragments on opposite ends of the par-
ent sequence. Moreover, the cities in the TSP are not assumed to
have any relationship other than the distances, and the ordering
is the final solution to the problem. In FAP, the ordering referred

604 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 36, NO. 5, SEPTEMBER 2006

to as “beads on a string,” is only an intermediate step; the layout
process uses the overlap data to position the bases within the
fragments relative to each other. Here, GAs can be applied. A
way of using it in FAP is explained as follows.

Step 1) Let 1, 2, . . . , j, . . . , n represent the indices of n frag-
ments in the spectrum of fragments. Pairwise re-
lationship (similarity) of a fragment with all other
fragments (oligonucleotides) is calculated and kept
in an n × n matrix. Dynamic programming gives
best alignment between two sequences (fragments).
In this method, each possible orientation is tried for
the two fragments, and the overlap, orientation, and
alignment are chosen to maximize the similarity be-
tween fragments.

Step 2) All the indices of fragments are then ordered ran-
domly with no repetition. Let f1, f2, . . . , fi , . . . , fn

be such an ordering of a sequence of n fragments,
where fi = j means that fragment j (in the fragment
set) appears in position i of the ordering. The fitness
function of this ordered sequence can be computed
using

F =
n−1∑
i=1

Wfi ,fi+1 (2)

where Wi,j is the pairwise overlap strength (similar-
ity) of fragments i and j in the ordered sequence, as
obtained in the n × n matrix.
Such an ordered sequence provides a genetic repre-
sentation of an individual chromosome in GA.

Step 3) In this way, P ordered sequences are generated,
where P is the size of the population of GA.

Step 4) GA is applied with this population and the following
operations.

Selection: Fitness of each sequence is evaluated as in
(2), and sequences with higher fitness are selected
with roulette wheel.

Crossover: Crossover is performed between two ran-
domly selected sequences for a given crossover
rate.

Mutation: For a given mutation rate, only that muta-
tion operator can be applied for which there will be
no repetition of fragment indexes in the sequence.

Elitist model: A new population is created at each
generation of GA. The sequence with highest
fitness from the previous generation replaces
randomly a sequence from this new generation,
provided the fitness of the fittest sequence in the
previous generation is higher than the best fitness
in this current generation.

Step 5) The best sequence of indices with maximum F value
is obtained from the GA. From this sequence of in-
dices, the corresponding sequence of fragments is
obtained using the overlapping information in the
n × n matrix of Step 1).

Step 6) This alignment of fragments is examined to deter-
mine the places where insertion or deletion error

likely occurred, and gaps or bases are then inserted
or deleted into the fragments to obtain their best
possible alignment. The resulting sequence is called
consensus sequence.

Note: The neighboring fragments in the resulting sequence
are assumed to be maximally overlapped—thereby ensuring in-
clusion in the resulting sequence as many fragments as possible.
The fitness function GA evaluating an individual selects the best
substring of oligonucleotides, or the chromosome; i.e., the one
composed of the most fragments, provided its length is equal to
the given length of the reference DNA sequence.

Different GA operators for the assembly of DNA sequence
fragments associated with the Human Genome project was stud-
ied in [13]. The sorted order representation and the permutation
representation are compared on problems ranging from 2–34 K
base pairs (KB). It is found that edge-recombination crossover
used in conjunction with several specialized operators performs
the best. Other relevant investigations for solving FAP using
GAs are available in [14] and [15].

III. BIOINFORMATICS TASKS AND APPLICATION OF EAs

We now describe the different problems and associated tasks
involved in bioinformatics, their requirements, and the ways in
which computational models can be formulated to solve them.
The classified tasks (as mentioned in Section II-A) are first
explained in this section, followed by a description of how GAs
and other evolutionary techniques are applied in solving them.

A. Alignment and Comparison of DNA, RNA, and
Protein Sequences

An alignment is a mutual placement of two or more sequences
which exhibit where the sequences are similar, and where they
differ. These include alignment and prediction of DNA, RNA,
protein sequences, and fragment assembly of DNA. An optimal
alignment is the one that exhibits the most correspondences and
the fewest differences. It is the alignment with the highest score,
but which may or may not be biologically meaningful. Basically,
there are two types of alignment methods: global alignment and
local alignment. Global alignment [16] maximizes the num-
ber of matches between the sequences along the entire length
of the sequence. Local alignment [17] gives a highest scoring
to local match between two sequences. Global alignment in-
cludes all the characters in both sequences from one end to
the other, and is excellent for sequences that are known to be
very similar. If the sequences being compared are not similar
over their entire lengths, but have short stretches within them
that have high levels of similarity, a global alignment may miss
the alignment of these important regions, and local alignment
is then used to find these internal regions of high similarity.
Pairwise comparison and alignment of protein or nucleic acid
sequences is the foundation upon which most other bioinformat-
ics tools are built. Dynamic programming (DP) is an algorithm
that allows for efficient and complete comparison of two (or
more) biological sequences, and the technique is known as the
Smith–Waterman algorithm [17]. It refers to a programmatic
technique or algorithm which, when implemented correctly,

PAL et al.: EVOLUTIONARY COMPUTATION IN BIOINFORMATICS: A REVIEW 605

effectively makes all possible pairwise comparisons between
the characters (nucleotide or amino acid residues) in two bio-
logical sequences. Spaces may need to be inserted within the
sequences for alignment. Consecutive spaces are defined as a
gap. The final result is a mathematically, but not necessarily
biologically, optimal alignment of the two sequences. A simi-
larity score is also generated to describe how similar the two
sequences are, given the specific parameters used.

A multiple alignment arranges a set of sequences in a manner
that positions thought to be homologous are placed in a common
column. There are different conventions regarding the scoring
of a multiple alignment. In one approach, the scores of all the
induced pairwise alignments contained in a multiple alignment
are simply added. For a linear gap penalty, this amounts to scor-
ing each column of the alignment by the sum of pair (SP-) scores
in this column [10]. Although it would be biologically mean-
ingful, the distinctions between global, local, and other forms of
alignment are rarely made in a multiple alignment. A full set of
optimal pairwise alignments among a given set of sequences will
generally overdetermine the multiple alignment. If one wishes
to assemble a multiple alignment from pairwise alignments, one
has to avoid “closing loops,” i.e., one can put together pairwise
alignments as long as no new pairwise alignment is included to a
set of sequences which is already part of the multiple alignment.

Methods: GAs are used to solve the problem of multiple
sequence alignment. Before we describe them, it may be men-
tioned that other optimization methods, such as simulated an-
nealing [18] and Gibbs sampling [19], are also used in this
regard. Simulated annealing can sometimes be very slow, al-
though it works well as an alignment improver. Gibbs sampling
is good in finding local multiple alignment block with no gaps,
but is not suitable in gapped situations.

It was first described in Sequence Alignment by Genetic Al-
gorithm (SAGA) [20] how to use GA to deal with sequence
alignments in a general manner (without DP), shortly before
a similar work by Zhang et al. [21]. The population is made
of alignments, and the mutations are processing programs that
shuffle the gaps using complex methods. In SAGA, each indi-
vidual (chromosome) is a multiple alignment of sequences. The
population size is 100 and there is no identical individual in
it. To create one of these alignments, a random offset is cho-
sen for all the sequences (the typical range is from 0–50 for
sequences 200 residues long) and each sequence is moved to
the right, according to its offset. The sequences are then padded
with null signs in order to have the same length. The fitness of
each individual (alignment) is computed as the score of the cor-
responding alignment. All the individuals are ranked according
to their fitness, and the weakest are replaced by new children.
Only a portion (e.g., 50%) of the population are replaced dur-
ing each generation. Two types of crossover, two types of gap
insertion mutation, 16 types of block shuffling mutation, one
block searching mutation, and two local optimal rearrangemet
mutation operators are used in SAGA. During initialization of
the program, all the operators have the same probability of
being used, equal to 1/22. An automatic procedure (dynamic
schedules, proposed by Davis [22]) for selecting operator has
been implemented in SAGA. In this model, an operator has a

probability of being used that is a function of the efficiency it
has recently (e.g., ten last generations) displayed at improving
alignments. The credit an operator receives when performing an
improvement is also shared with the operators that came before,
and may have played a role in this improvement. Thus, each
time a new individual is generated, if it yields some improve-
ment on its parents, the operator that is directly responsible for
its creation gets the largest part of the credit (e.g., 50%). Then
the operator(s) responsible for the creation of the parents also
get their share of the remaining credit (50% of the remaining
credit; i.e., 25% of the original credit), and so on. This report
of the credit goes on for some specified number of generations
(e.g., 4). After a given number of generations (e.g., 10) these
results are summarized for each of the operators. The credit of
an operator is equal to its total credit divided by the number of
children it generated. This value is taken as usage probability
and will remain unchanged until the next assessment, ten gener-
ations later. To avoid the early loss of some operators that may
become useful later on, all the operators are assigned a mini-
mum probability of being used (the same for all them, typically
equal to half their original probability, i.e., 1/44). The automat-
ically assigned probabilities of usage at different stages in the
alignment give a direct measure of usefulness or redundancy
for a new operator. SAGA is stopped when the search has been
unable to improve for some specified number of generations
(typically 100). This condition is the most widely used when
working on a population with no duplicates.

Other approaches [23]–[25] are similar to SAGA where, a
population of multiple alignment evolves by selection, combina-
tion, and mutation. The main difference between SAGA and re-
cent algorithms has been the design of better mutation operators.
A simple GA, applied in a straightforward fashion to the align-
ment problem, was not very successful [20]. The main devices
which allow GAs to efficiently reach very high quality solutions
are the use of: 1) a large number of mutation and crossover oper-
ators, and 2) their automatic scheduling. The GA based methods
are not very efficient at handling all types of situations. So it is
necessary to invent some new operators designed specifically for
the problem, and to slot them into the existing scheme. Most of
the investigations using GAs for sequence alignment are on dif-
ferent data sets and results are compared with that of CLUSTAL
W [26], so a clear comparison between the GA based methods
is not possible. A hybrid approach [27], [28], uses the searching
ability of GAs for finding match blocks, and dynamic program-
ming for producing close to optimum alignment of the match
blocks. This method is faster and produces better results than
pure GA and DP based approaches. Here, the population size is
determined as Q = mn/100, where m is the average sequence
length and n is the number of sequences.

In [29], it was pointed out that the combination of high-
performance crossover and mutation operators does not always
lead to a high performance GA for sequencing because of the
negative combination effect of those two operators. A high-
performance GA can be constructed by utilizing the positive
combination effect of crossover and mutation.

Other relevant investigations for solving multiple sequence
alignment using GAs are available in [30]–[34].

606 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 36, NO. 5, SEPTEMBER 2006

B. Gene Mapping on Chromosomes

Gene mapping is defined as the determination of relative posi-
tions of genes on a chromosome, and the distance between them.
A gene map helps molecular biologists to explore a genome. A
primary goal of the Human Genome Project is to make a se-
ries of descriptive diagram maps of each human chromosome
at increasingly finer resolutions. Two types of gene maps, viz.,
cytogenetic map and linkage map are generally used. A cyto-
genetic map, also known as a physical map, offers a physical
picture of the chromosome. In a cytogenetic map, the chromo-
somes are divided into smaller fragments that can be propagated
and characterized, and then the fragments are ordered (mapped)
to correspond to their respective locations on the chromosomes.
A genetic linkage map shows the relative locations (order) of
specific DNA markers along the chromosome.

Since EAs have been used for determining the genetic linkage
map, it is described here briefly. The genetic markers in a link-
age map are generally small, but precisely defined sequences and
can be expressed as DNA regions (genes) or DNA segments that
have no known coding function but whose inheritance pattern
can be followed. DNA sequence differences are especially use-
ful markers because they are plentiful and easy to characterize
precisely [10]. A linkage map is constructed by the following:

1) producing successive generations (chromosomes) of cer-
tain organisms through crossover (recombination), and

2) analyzing the observed segregation percentages of certain
characteristics in each chromosomal data to find the actual
gene order.

A linkage map shows the order and relative distance between
genes, but has two drawbacks [10]. First, it does not tell the
actual distance of genes, and second, if genes are very close,
one can not resolve their order, because the probability of sepa-
ration is so small that the observed recombinant frequencies are
all zero. The closer two genes are, the lower the probability that
they will be separated during the DNA repair or replication pro-
cess, and hence the probability is greater that they will be inher-
ited together. For example, suppose a certain stretch of DNA has
been completely sequenced, giving us a sequence S. If we know
which chromosome S came from, and if we have a physical map
of this chromosome, we could try to find one of the map’s mark-
ers in S. If the process succeeds, we can locate the position of
S in the chromosome. The best criterion to quantify how well a
map explains the data set is the multipoint maximum likelihood
(exploiting the data on all markers simultaneously) of the map.
Given a probabilistic model of recombination for a given family
structure, a genetic map of a linkage group, and the set of avail-
able observations on markers of the linkage group, we can define
the probability that the observations may have occurred given the
map. This is termed the likelihood of the map. The likelihood is
only meaningful when compared to the likelihood of other maps.

The problem of finding a maximum likelihood genetic map
can be described as a double optimization problem. For a given
gene order, there is the problem of finding recombination prob-
abilities (crossover probabilities) that yield a maximum multi-
point likelihood; then, one must find an order that maximizes
this maximum likelihood. The first problem is solved by us-
ing the expectation maximization (EM) algorithm. The second

problem is more difficult, because the number of possible orders
to consider for N markers is N !/2. This type of combinatorial
problem can be handled efficiently by evolutionary algorithms.
The problem of finding an order of genes that maximizes the
maximum multipoint likelihood is equivalent to the symmet-
ric TSP. One can simply associate one imaginary city to each
marker, and define as the distance between two cities the inverse
of the elementary contribution to the log-likelihood defined by
the corresponding pair of markers.

Methods: The method of genetic mapping described in [35]
is embodied in a hybrid framework that relies on the statisti-
cal optimization algorithms (e.g., expectation maximization) to
handle the continuous variables (recombination probabilities),
while GAs handle the ordering problem of genes. The efficiency
of the approach lies critically in the introduction of greedy local
search in the fitness evaluation of the GA, using a neighborhood
structure inspired by the TSP. A population size ranging from
25–250 has been used for number of markers between 10–29.

In gene mapping problem, Gunnels et al. [36] compared GAs
with simulated annealing (SA), and found that the GA-based
method always converges to a good solution faster since its
population-based nature allows it to take advantage of the extra
information to construct good local maps that can then be used
to construct good global maps.

In canonical GAs with the fixed map it is difficult to design the
map without a priori knowledge of the solution space. This is
overcome in [37], where GAs using a coevolutionary approach
are utilized for exploring not only within a part of the solution
space defined by the genotype-phenotype map, but also with the
map itself. Here, the genotype-phenotype map is improved adap-
tively during the searching process for solution candidates. The
algorithm is applied to three-bit deceptive problems as a kind of
typical combinatorial optimization problem. The difficulty with
canonical GAs can be controlled by the genotype-phenotype
map, and the output shows fairly good performance.

Relevant investigation for gene mapping using GAs is also
available in [38].

C. Gene Finding and Promoter Identification From
DNA Sequences

Automatic identification of the genes from the large DNA
sequences is an important problem in bioinformatics [39]. A
cell mechanism recognizes the beginning of a gene or gene
cluster with the help of a promoter and is necessary for the
initiation of transcription. The promoter is a region before each
gene in the DNA that serves as an indication to the cellular
mechanism that a gene is ahead. For example, the codon AUG
(which codes for methionine) also signals the start of a gene.
Recognition of regulatory sites in DNA fragments has become
particularly popular because of the increasing number of
completely sequenced genomes and mass application of DNA
chips. Experimental analyses have identified fewer than 10% of
the potential promoter regions, assuming that there are at least
30 000 promoters in the human genome, one for each gene.

Methods: Using GA, Kel et al. [40] designed sets of appro-
priate oligonucleotide probes capable of identifying new genes
belonging to a defined gene family within a cDNA or genomic

PAL et al.: EVOLUTIONARY COMPUTATION IN BIOINFORMATICS: A REVIEW 607

library. One of the major advantages of this approach is the
low homology requirement to identify functional families of
sequences with little homology.

Levitsky et al. [41] described a method for recognizing
promoter regions of eukaryotic genes with an application on
Drosophila melanogaster. Its novelty lies in realizing the GA to
search for an optimal partition of a promoter region into local
nonoverlapping fragments, and selection of the most significant
dinucleotide frequencies for the fragments.

The method of prediction of eukaryotic Pol II promoters from
DNA sequence [42] takes advantage of a combination of ele-
ments similar to neural networks and GAs to recognize a set of
discrete subpatterns with variable separation as one pattern: a
promoter. The neural networks use, as input, a small window of
DNA sequence, as well as the output of other neural networks.
Through the use of GAs, the weights in the neural networks are
optimized to discriminate maximally between promoters and
nonpromoters.

D. Interpretation of Gene Expression and Microarray Data

Gene expression is the process by which a gene’s coded in-
formation is converted into the structures present and operating
in the cell. Expressed genes include those that are transcribed
into mRNA and then translated into protein, and those that are
transcribed into RNA but not translated into protein (e.g., trans-
fer and ribosomal RNAs). Not all genes are expressed, and gene
expression involves the study of the expression level of genes
in the cells under different conditions. Conventional wisdom is
that gene products which interact with each other are more likely
to have similar expression profiles than if they do not [43].

Microarray technology [44] allows expression levels of thou-
sands of genes to be measured at the same time. A microarray
is typically a glass (or some other material) slide, on to which
DNA molecules are attached at fixed locations (spots). There
may be tens of thousands of spots on an array, each containing
a huge number of identical DNA molecules (or fragments of
identical molecules), of lengths from twenty to hundreds of nu-
cleotides. Each of these molecules ideally should identify one
gene or one exon in the genome. The spots are either printed on
the microarrays by a robot, or synthesized by photolithography
(as in computer chip productions), or by ink-jet printing.

Many unanswered and important questions could potentially
be answered by correctly selecting, assembling, analyzing, and
interpreting microarray data. Clustering is commonly used in
microarray experiments to identify groups of genes that share
similar expressions. Genes that are similarly expressed are of-
ten coregulated and are involved in the same cellular processes.
Therefore, clustering suggests functional relationships between
groups of genes. It may also help in identifying promoter se-
quence elements that are shared among genes. In addition, clus-
tering can be used to analyze the effects of specific changes
in experimental conditions, and may reveal the full cellular re-
sponses triggered by those conditions.

A good solution of the gene ordering problem (i.e., finding
optimal order of DNA microarray data) will have similar genes
grouped together, in clusters. A notion of distance must thus be

defined in order to measure similarity among genes. A simple
measure is the Euclidean distance (other options are possible
using Pearson correlation, absolute correlation, Spearman rank
correlation, etc.). One can thus construct a matrix of intergene
distances. Using this matrix one can calculate the total distance
between adjacent genes and find that permutation of genes for
which the total distance is minimized [similar to what is done
in the TSP using GA (Section II-B)].

Methods: Finding the optimal order of microarray data is
known to be NP complete. Tsai et al. [45] formulated this as the
traveling salesman problem and the applied family competition
GA (FCGA), to solve it. The edge assembly crossover (EAX) is
combined with the family competition concept and neighbor join
mutation (NJ). In [46], a modified EAX and NJ are used in EA
for efficiently optimizing the clustering and ordering of genes,
ranging in size from 147 to 6221. Chromosomes in EAs are
represented as a permutation of genes. The size of the population
is assumed to equal to the number of genes in problems that
involved fewer than 1000 genes, and half of the number of gens
in larger problems. Fitness of chromosomes are evaluated from
(1) and distance matrix is formed using pearson correlation.
Crossover and mutation rates are set to one. Microarray data
analysis is a competitive field, and no decisive measure of the
performance of methods is available, so methods using EAs for
microarray are compared in the TSP framework [46].

Garibay et al. [47] introduced a proportional GA (PGA) that
relies on the existence or nonexistence of genes to determine
the information that is expressed. The information represented
by a PGA individual depends only on what is present in the
individual, and not on the order in which it is present. As a
result, the order of the encoded information is free to evolve in
response to factors other than the value of the solution.

E. Gene Regulatory Network Identification

Inferring a gene regulatory network from gene expression
data obtained by DNA microarray is considered one of the
most challenging problems in the field of bioinfomatics [48].
An important and interesting question in biology, regarding the
variation of gene expression levels, is how genes are regulated.
Since almost all cells in a particular organism have an identical
genome, differences in gene expression, and not the genome
content, are responsible for cell differentiation during the life of
the organism.

For gene regulation, an important role is played by a type
of proteins called transcription factors [10]. The transcription
factors bind to specific parts of the DNA, called transcription
factor binding sites (i.e., specific, relatively short combinations
of A, T, C or G), which are located in promoter regions. Specific
promoters are associated with particular genes and are generally
not too far from the respective genes, although some regulatory
effects can be located as far as 30 000 bases away, which makes
the definition of the promoter difficult.

Transcription factors control gene expression by binding to
the gene’s promoter and either activating (switching on) the
gene or repressing it (switching it off). Transcription factors
are gene products themselves, and therefore, in turn, can be

608 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 36, NO. 5, SEPTEMBER 2006

controlled by other transcription factors. Transcription factors
can control many genes, and some (probably most) genes are
controlled by combinations of transcription factors. Feedback
loops are possible. Therefore, we can talk about gene regulation
networks. Microarrays and computational methods are playing
a major role in attempts to reverse engineer gene networks from
various observations.

Methods: In gene network inference problem the objective
is to predict a regulating network structure of the interacting
genes from the observed data; i.e., expression pattern. The gene
expressions are regulated in discrete state transitions such that
the expression levels of all genes are updated simultaneously.
In [49], each real valued chromosomes (in GAs) represents the
expression level of all the genes. Each gene has a specific ex-
pression level for another gene; so, for N genes there are N2

expression levels. Fitness of the chromosomes are evaluated by
absolute error with generated expression pattern (The sum of all
expressions) from the target expression pattern. A population
size of 2500, 5000, and 7000 are taken for 5, 7, and 10 genes,
respectively. The GA run for 150 generations with a crossover
and mutation rate of 0.99 and 0.01, respectively. Relevant in-
vestigations using GAs are also available in [50]–[53].

F. Construction of Phylogenetic Trees for Studying
Evolutionary Relationship

All species on earth undergo a slow transformation process
called evolution. To explain the evolutionary history of today’s
species and how species relate to one another in terms of com-
mon ancestors, trees are constructed whose leaves represent
the present day species, and interior nodes which represent the
hypothesized ancestors. These kind of labeled binary trees are
called phylogenetic trees [10]. Phylogenetic analysis is used to
study the evolutionary relationship.

Phylogenies are reconstructed based on comparisons between
present-day objects. The term object is used to denote the units
for which one wants to reconstruct the phylogeny. Input data re-
quired for constructing phylogeny are classified into two main
categories [10]. 1) Discrete character, such as beak shape, num-
ber of fingers of presence or absence of a molecular restriction
site. Each character can have a finite number of states. The data
relative to these characters are placed in an objects character
matrix called character state matrix. 2) Comparative numerical
data, called distances between objects. The resulting matrix is
called a distance matrix.

Given data (character state matrix or distance matrix) for n
taxa (objects), the phylogenetic tree reconstruction problem is to
find the particular permutation of taxa that optimize the criteria
(distance). The problem is equivalent to the problem of TSP.
One can simply associate one imaginary city to each taxa, and
define as the distance between two cities the data obtained from
the data matrix for the corresponding pair of taxas.

Methods: Exhaustive search of the space of phylogenetic trees
is generally not possible for more than 11 taxa, and so algorithms
for efficiently searching the space of trees must be developed.
Phylogeny reconstruction is a difficult computational problem,
because the number of possible solutions (permutations) in-

creases with the number of included taxa (objects) [54]. Branch-
and-bound methods can reasonably be applied for up to about 20
taxa, so scientists generally rely on heuristic algorithms, such as
stepwise-addition and star-decomposition methods. However,
such algorithms generally involve a prohibitive amount of com-
putation time for large problems and often find trees that are only
locally optimal. Heuristic search strategies using GAs [54]–[57]
can overcome the aforementioned problems by faster recon-
struction of the optimal trees with less computing power.

In [57], each chromosome in GA is encoded as a permutation
of 15 taxas (the same as TSP); and selection, crossover, and mu-
tation operations are performed to minimize the distance among
the taxas. Here, each taxa is an amino acid sequence taken from
the GenBank, and distance between them is computed as an
alignment score using CLUSTAL W [26]. The GA population
consisted of 20 trial trees. A crossover probability of 0.5 and
mutation probability of 0.2 has been used. Optimal trees are
obtained after 138 generations. The only difference with TSP is
that the end points of the chromosome GA are relevant in phy-
logenetic trees as they represent the starting and the end points
of evolutionary relationship. GAs has also been used [58] for
automatic self-adjustment of the parameters of the optimization
algorithm of phylogenetic trees.

G. DNA Structure Prediction

DNA structure plays an important role in a variety of biolog-
ical processes. Different dinucleotide and trinucleotide scales
have been described to capture various aspects of DNA struc-
ture including base stacking energy, propeller twist angle, pro-
tein deformability, bendability, and position preference [59].
three-dimension DNA structure and its organization into chro-
matin fibres is essential for its functions, and is applied in protein
binding sites, gene regulation, triplet repeat expansion diseases,
etc. DNA structure depends on the exact sequence of nucleotides
and largely on interactions between neighboring base pairs. Dif-
ferent sequences can have different intrinsic structures. Periodic
repetitions of bent DNA in phase with the helical pitch will
cause DNA to assume a macroscopically curved structure. Flex-
ible or intrinsically curved DNA is energetically more favorable
to wrap around histones than rigid and unbent DNA.

The curvature of a space line is defined as the derivative,
dt/dl, of the tangent vector t, along the line l. Its modulus is
the inverse of the curvature radius, and its direction is that of
the main normal to the curve [61]. In the case of DNA, the line
corresponds to the helical axis and the curvature is a vectorial
function of the sequence. The curvature represents the angular
deviation (|C(n)|) between the local helical axes of the nth and
(n + 1)th base pairs (Fig. 4). Under similar external conditions,
the intrinsic curvature function represents the differential
behavior of different DNA tracts and corresponds to the most
stable superstructure. The physical origin of curvature is still a
matter of debate [60]; it is, however, a result of the chemical and,
consequently, stereochemical, inhomogeneity of the sequence,
which gives rise to different macroscopic manifestations. These
manifestations change with the thermodynamic conditions such
as pH, the ionic force, the kind of counterions, and obviously the

PAL et al.: EVOLUTIONARY COMPUTATION IN BIOINFORMATICS: A REVIEW 609

temperature as a result of perturbations on the intrinsic curvature
depending on the sequence-dependent bendability. Therefore,
it is generally useful to characterize a DNA superstructure with
the so-called intrinsic curvature function [60].

Methods: The 3-D spatial structure of a methylene-acetal-
linked thymine dimer present in a 10 basepair (bp) sense–
antisense DNA duplex was studied in [62] with a GA designed to
interpret nuclear Overhauser effect (NOE) inter-proton distance
restraints. Trial solutions (chromosomes in GAs) are encoded
on bit strings which represents torsion angles between atoms.
From these torsion angles, atomic coordinates, needed for the
fitness function are calculated using the DENISE program. The
problem is to find a permutation of torsion angles (eight torsion
angles for each nucleotide in DNA) that minimizes the atomic
distance between protons of neucleotides. The GA minimizes
the difference between distances in the trial structures and dis-
tance restraints for a set of 63 proton–proton distance restraints
defining the methylene-acetal-linked thymine dimer. The tor-
sion angles were encoded by Gray coding and the GA population
consisted of 100 trial structures. Uniform crossover with a prob-
ability of 0.9 and mutation rate of 0.04 was used. It was demon-
strated that the bond angle geometry around the methylene-
acetal linkage plays an important role in the optimization.

A hybrid technique involving artificial neural networks
(ANN) and GA is described in [63] for optimization of DNA
curvature characterized in terms of the reliability (RL) value. In
this approach, first an ANN approximates (models) the nonlin-
ear relationship(s) existing between its input and output example
data sets. Next, the GA searches the input space of the ANN
with a view to optimize the ANN output. Using this method-
ology, a number of sequences possessing high RL values have
been obtained and analyzed to verify the existence of features
known to be responsible for the occurrence of curvature.

H. RNA Structure Prediction

An RNA molecule is considered as a string of n characters
R = r1r2 · · · rn such that riεA,C,G,U . Typically n is in the
hundreds, but could also be in thousands. The secondary struc-
ture of the molecule is a collection S of a set of stems and each
stem consisting of a set of consecutive base pairs (rirj) (e.g.,
GU, GC, AU). Here, 1 ≤ i ≤ j ≤ n and (ri and rj) are con-
nected through hydrogen bonds. If (ri, rj)εS, in principle we
should require that ri be a complement to rj and that j − i > t,
for a certain threshold t (because it is known that an RNA
molecule does not fold too sharply on itself). With such an as-
sumption [10], the total free energy E of a structure S is given
by

E(s) =
∑

(ri ,rj)∈S

α(ri, rj) (3)

where α(ri, rj) gives the free energy of base pair (ri, rj). Gen-
erally, the adopted convention is α(ri, rj) < 0, if i �= j, and
α(ri, rj) = 0, if i = j.

Attempts to predict automatically the RNA secondary struc-
ture can be divided in essentially two general approaches. The
first involves the overall free energy minimization by adding

contributions from each base pair, bulged base, loop, and other
elements [64]. EAs are found to be suitable for this purpose.
Chromosomes in EAs are encoded to represent the RNA struc-
ture and fitness of each chromosome is evaluated in terms of free
energy (3). The second type of approach [65] is more empirical
and it involves searching for the combination of nonexclusive
helices with a maximum number of base pairings, satisfying the
condition of a tree like structure for the bio-molecule. Within
the latter, methods using dynamic programming (DP) are the
most common [65], [66]. While DP can accurately compute
the minimum energy within a given thermodynamic model, the
natural fold of RNA is often in a suboptimal energy state and
requires soft computing EAs rather than hard computing DP.

RNA may enter intermediate conformational states that are
key to its functionality. These states may have a significant im-
pact on gene expression. The biologically functional states of
RNA molecules may not correspond to their minimum energy
state, and kinetic barriers may exist that trap the molecule in a
local minimum. In addition, folding often occurs during tran-
scription, and cases exist in which a molecule will undergo
transitions between one or more functional conformations be-
fore reaching its native state. Thus, methods for simulating the
folding pathway of an RNA molecule and locating significant
intermediate states are important for the prediction of RNA
structure and its associated function.

Methods: The possibilities of using GAs for the prediction of
RNA secondary structure were investigated in [67] and [68]. The
implementations used a binary representation for the solutions
(chromosomes in GAs). The algorithm, using the procedure of
stepwise selection of the most fit structures (similarly to natural
evolution), allows different models of fitness for determining
RNA structures. The analysis of free energies for intermediate
foldings suggests that in some RNAs, the selective evolutionary
pressure suppresses the possibilities for alternative structures
that could form in the course of transcription. The algorithm
had inherent incompatibilities of stems due to the binary repre-
sentation of the solutions.

Wiese et al. [69] used GAs to predict the secondary structure
of RNA molecules, where the secondary structure is encoded as
a permutation similar to path representation in TSP (each helix
is associated to one imaginary city) to overcome the inherent
incompatibilities of binary representation for RNA molecule
structure prediction. They showed that the problem can be
decomposed into a combinatorial problem of finding the subset
of helices from a set of feasible helices leading to a minimum
energy [using (3)] in the molecule. More specifically, the algo-
rithm predicts the specific canonical base pairs that will form
hydrogen bonds and build helices. Different combinations of
crossover and mutation probabilities ranging from 0.0 to 1.0 in
increments of 0.01 and 0.1 were tested for 400 generations with
a population size of 700 (maximum). Results on RNA sequences
of lengths 76, 210, 681, and 785 nucleotides were provided.
It was shown that the keep-best reproduction operator has
similar benefits as in the traveling salesman problem domain. A
comparison of several crossover operators was also provided.

A massively parallel GA for the RNA folding problem has
been used in [70]–[72]. The authors demonstrated that the

610 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 36, NO. 5, SEPTEMBER 2006

Fig. 4. Representation of the DNA curvature in terms of angular deviation
between the local helical axes of the turn centered on the nth and (n + 1)th
basepairs [60].

GA with an improved mutation operator predicts more correct
(true-positive) stems and more correct base pairs than could
have been a predicted with DP algorithm.

I. Protein Structure Prediction and Classification

Identical protein sequences result in identical 3-D structures.
So it follows that similar sequences may result in similar struc-
tures, and this is usually the case. The converse, however, is not
true: identical 3-D structures do not necessarily indicate iden-
tical sequences. It is because of this that there is a distinction
between “homology” and “similarity.” There are examples of
proteins in the databases that have nearly identical 3-D struc-
tures, and are therefore homologous, but do not exhibit signif-
icant (or detectable) sequence similarity. Pairwise comparisons
do not readily show positions that are conserved among a whole
set of sequences and tend to miss subtle similarities that become
visible when observed simultaneously among many sequences.
Thus, one wants to simultaneously compare several sequences.

Structural genomics is the prediction of the 3-D structure of
a protein from the primary amino acid sequence [73]. This is
one of the most challenging tasks in bioinformatics. The five
levels of protein structure are described below. Three of them
are illustrated in Fig. 5.

1) Primary structure is the sequence of amino acids that com-
pose the protein.

2) The secondary structure of a protein is the spatial arrange-
ment of the atoms constituting the main protein backbone.
Linus Pauling was the first to develop a hypothesis for
different potential protein secondary structures. He devel-
oped the α-helix structure and later the β-sheet structure
for different proteins. An α-helix is a spiral arrangement
of the protein backbone in the form of a helix with hydro-
gen bonding between side-chains. The β-sheets consist of
parallel or antiparallel strands of amino acids linked to
adjacent strands by hydrogen bonding. Collagen is an ex-
ample of a protein with β-sheets serving as its secondary
structure.

3) The super-secondary structure (or motif) is the local fold-
ing pattern built up from particular secondary structures.
For example, the EF-hand motif consists of an α-helix,
followed by a turn, followed by another α-helix.

4) Tertiary structure is formed by packing secondary struc-
tural elements linked by loops and turns into one or several

Fig. 5. Three levels of protein structure.

compact globular units called domains; i.e., the folding of
the entire protein chain.

5) A final protein may contain several protein subunits ar-
ranged in a quaternary structure.

Protein sequences almost always fold into the same structure
in the same environment. Hydrophobic interaction, hydrogen
bonding, electrostatic, and other Van der Waals-type interactions
also contribute to determine the structure of the protein. Many
efforts are underway to predict the structure of a protein, given
its primary sequence. A typical computation of protein folding
would require computing all the spatial coordinates of atoms in a
protein molecule, starting with an initial configuration and work-
ing up to a final minimum-energy folding configuration [10]. Se-
quence similarity methods can predict the secondary and tertiary
structures based on homology to known proteins. Secondary
structure predictions methods include Chou–Fasman [73], neu-
ral network [74], [75], nearest neighbor methods [76], [77], and
Garnier–Osguthorpe–Robson [78]. Tertiary structure prediction
methods are based on energy minimization, molecular dynam-
ics, and stochastic searches EAs of conformational space.

Proteins clustered together into families are clearly evolution-
arily related. Generally, this means that pairwise residue identi-
ties between the proteins are 30% and greater. Proteins that have
low sequence identities, but whose structural and functional fea-
tures suggest that a common evolutionary origin is probable, are
placed together in superfamilies.

Methods: The work of Unger et al. [79]–[81] is one of the ear-
lier investigations that discussed the reduced 3-D lattice protein
folding problem for determining tertiary structure of protein in
a GA framework. In this model, the energy function of protein
chains is optimized. The encoding proposed by Unger et al. is a
direct encoding of the direction of each peptide from the preced-
ing peptide (five degrees of freedom, disallowing back move).
Peptides are represented as single point units without side
chains. Each peptide is represented by three bits to encode five
degrees of freedom. The evaluation function solely evaluates
nonsequential hydrophobe to hydrophobe contacts and is stated
as a negative value (−1 per contact) with larger negative values
indicating better energy conformations (thus stating the problem
in terms of minimization). The algorithm begins with a popu-
lation of identical unfolded configurations. Each generation be-
gins with a series of K mutations being applied to each individual
in the population, where K is equal to the length of the encoding.
These mutations are filtered using a Monte Carlo acceptance al-
gorithm which disallows lethal configurations (those with back
move), always accepts mutations resulting in better energy, and
accepts increased energy mutations based upon a threshold on
the energy gain which becomes stricter over time. One-point

PAL et al.: EVOLUTIONARY COMPUTATION IN BIOINFORMATICS: A REVIEW 611

crossover with an additional random mutation at the crossover
point follows, producing a single offspring for each selected pair
of parents; however, lethal configurations are rejected. In this
situation, the crossover operation is retried for a given pair of
parents until a nonlethal offspring can be located. Offspring are
accepted using a second Monte Carlo filter which accepts all
reduced energy confirmations and randomly accepts increased
energy offspring again using a cooling threshold on the energy
gain. The algorithm uses 100% replacement of all individuals
in a generation through crossover except the single best, elitist,
individual. Test data consisted of a series of ten randomly pro-
duced 27 length sequences and ten randomly produced 64 length
sequences. The algorithm operated on each of the 27 and 64
length sequence for roughly 1.2 million and 2.2 million function
evaluations, respectively, using a population size of 200. Per-
formance comparisons were given between the above algorithm
and a pure Monte Carlo approach which greatly favored the for-
mer. While the encoding and evaluation function proposed by
Unger and Moult are fairly straightforward, the algorithm differs
from a standard GA approach in several aspects. Most notable
are the nonrandom initialization, the high level of mutation, and
the Monte Carlo filtering of both the mutation and crossover re-
sults, which resembles typical simulated annealing approaches.

Patton et al. [82] determined tertiary structures of proteins
based on the concept of Unger et al. [36], [40]. They enlarged
the representation from three to seven bits per peptide in order
to encode one of the 120 permutations of the five allowable
directions for each. It was shown that the GA indeed appears to
be effective for determining the tertiary structure with far fewer
computational steps than that reported by Unger et al.

Natalio et al. [83], [84] investigated the impact of several al-
gorithmic factors for a simple protein structure prediction prob-
lem: the conformational representation, the energy formulation,
and the way in which infeasible conformations are penalized.
Their analysis leads to specific recommendations for both GAs
and other heuristic methods for solving PSP on the HP model.
A detailed comparison between the work of Unger et al. and
Patton et al. and an algorithm using GAs to overcome their
limitations has also been presented [84].

A hill-climbing GA for simulation of protein folding has been
described in [85]. The program builds a set of Cartesian points
to represent an unfolded polypeptide’s backbone. The dihedral
angles determining the chain’s configuration are stored in an
array of chromosome structures that is copied and then mutated.
The fitness of the mutated chain’s configuration is determined by
its radius of gyration. A four-helix bundle was used to optimize
the simulation conditions. The program ran 50% faster than the
other GA programs, and tests on 100 nonredundant structures
produced results comparable to that of other GAs.

In [86], features are extracted from protein sequences using
a position specific weight matrix. Thereafter, a genetic algo-
rithm based fuzzy clustering scheme [87] is used for generating
prototypes of the different superfamilies. Finally, superfamily
classification of new sequences is performed by using the near-
est neighbor rule.

Other investigations on protein structure prediction are avail-
able in [88]–[100]. An overview and state-of-the-art of the appli-

cations of EAs only for the protein folding problem is described
in [101], whereas the relevance of GAs in several bioinformatics
tasks is discussed in the present article.

J. Molecular Design and Molecular Docking

When two molecules are in close proximity, it can be energet-
ically favorable for them to bind together tightly. The molecular
docking problem is the prediction of energy and physical config-
uration of binding between two molecules. A typical application
is in drug design, in which one might dock a small molecule
that is a described drug to an enzyme one wishes to target. For
example, HIV protease is an enzyme in the AIDS virus that is
essential to its replication. The chemical action of the protease
takes place at a localized active site on its surface. HIV protease
inhibitor drugs are small molecules that bind to the active site
in HIV protease and stay there, so that the normal functioning
of the enzyme is prevented. Docking software allows us to eval-
uate a drug design by predicting whether it will be successful
in binding tightly to the active site in the enzyme. Based on
the success of docking, and the resulting docked configuration,
designers can refine the drug molecule [102].

Molecular design and docking is a difficult optimization prob-
lem, requiring efficient sampling across the entire range of posi-
tional, orientational, and conformational possibilities [103]. The
major problem in molecular binding is that the search space is
very large and the computational cost increases tremendously
with the growth of the degrees of freedom. A docking algorithm
must deal with two distinct issues: a sampling of the conforma-
tional degrees of freedom of molecules involved in the complex,
and an objective function (OF) to assess its quality.

For molecular design, the structure of a flexible molecule
is encoded by an integer-valued or real-valued chromosome in
GA, the ith element of which contains the torsion angle for the
ith rotable bond. The energy for the specified structure (confor-
mation) can be calculated using standard molecular modeling
package, and this energy is used as the fitness function for the
GA. GAs try to identify a set of torsion angle values that min-
imize the calculated energy. GA is becoming a popular choice
for the heuristic search method in molecular design and docking
applications [104]. Both canonical GAs and evolutionary pro-
gramming methods are found to be successful in drug design
and docking. Some of them are described below.

Methods: A novel and robust automated docking method that
predicts the bound conformations (structures) of flexible lig-
ands to macromolecular targets has been developed [105]. The
method combines GAs with a scoring function that estimates
the free energy change upon binding. This method applies a
Lamarckian model of genetics, in which environmental adapta-
tions of an individual’s phenotype are reverse transcribed into its
genotype and become inheritable traits. Three search methods,
viz., Monte Carlo simulated annealing, a traditional GA, and
the Lamarckian GA were considered, and their performance
was compared in dockings of seven protein-ligand test systems
having known three-dimensional structure. The chromosome is
composed of a string of realvalued genes: three Cartesian co-
ordinates for the ligand translation; four variables defining a

612 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 36, NO. 5, SEPTEMBER 2006

quaternion specifying the ligand orientation; and one real-value
for each ligand torsion, in that order. The order of the genes that
encode the torsion angles is defined by the torsion tree created
by AUTOTORS (a preparatory program used to select rotatable
bonds in the ligand). Thus, there is a one-to-one mapping from
the ligand’s state variables to the genes of the individuals chro-
mosome. An Individual’s fitness is the sum of the intermolecular
interaction energy between the ligand and the protein, and the
intramolecular interaction energy of the ligand. In the GA and
LGA dockings, an initial population of 50 random individuals, a
maximum number of 1.5 × 106 energy evaluations, a maximum
number of 27 000 generations, a mutation rate of 0.02, and a
crossover rate of 0.80 have been used. Proportional selection
was used, where the average of the worst energy results was
calculated over a window of the previous 10 generations.

Bagchi et al. [106], [107] presented an evolutionary approach
for designing a ligand molecule that can bind to the active site
of a target protein. A two-dimensional (2-D) model was consid-
ered. A variable string length genetic algorithm (VGA) was used
for evolving an appropriate arrangement of the basic functional
units of the molecule to be designed. The method is superior to
fixed string length GA for designing a ligand molecule to target
the human rhinovirus strain 14 (causative agent for AIDS).

Chen et al. [108] derived a population based annealing genetic
algorithm (PAG) using GAs and simulated annealing (SA). They
applied it to find binding structures for three drug protein molec-
ular pairs, including the anti-cancer drug methotrexate (MTX).
All of the binding results keep the energy at low levels, and have
a promising binding geometrical structure in terms of number
of hydrogen bonds formed. One of the design methods of PAG,
which incorporates an annealing scheme with the normal prob-
ability density function as the neighbor generation method, was
described in [109]. The algorithm was used for computer-aided
drug design. Using a dihydrofolate reductase enzyme with the
anti-cancer drug methotrexate and two analogs of the antibac-
terial drug trimethoprim, PAGs can find a drug structure within
several hours. A similar work is available in [110].

Christopher et al. [111] evaluated the use of GAs with local
search in molecular docking. They investigated several GA-local
search hybrids and compared results with those obtained from
simulated annealing in terms of optimization success, and abso-
lute success in finding the true physical docked configuration.

Other relevant investigations are available in [104],
[112]–[120]. A survey on the application of GAs for molecular
modeling, docking of flexible ligands into protein active sites,
and for de novo ligand design is described in [121]. Advantages
and limitations of GAs are mentioned for the aforementioned
tasks. In contrast, the present article provides a broader overview
and state-of-the-art of the applications of EAs for several bioin-
formatics tasks.

IV. CONCLUSION

The increasing availability of annotated genomic sequences
has resulted in the introduction of computational genomics and
proteomics, large-scale analysis of complete genomes, and the
proteins that they encode for relating specific genes to diseases.

The rationale for applying computational approaches to facil-
itate the understanding of various biological processes mainly
includes the following:

1) to provide a more global perspective in experimental de-
sign;

2) to capitalize on the emerging technology of database-
mining: the process by which testable hypotheses are
generated regarding the function or structure of a gene
or protein of interest by identifying similar sequences in
better characterized organisms.

GAs appear to be a very powerful artificial intelligence paradigm
to handle these issues. This article provides an overview of
different bioinformatics tasks and the relevance of GAs to handle
them efficiently.

Even though the current approaches in biocomputing using
EAs are very helpful in identifying patterns and functions of
proteins and genes, the output results are still far from perfect.
There are three general characteristics that might appear to limit
the effectiveness of GAs. First, the basic selection, crossover,
and mutation operators are common to all applications. There-
fore, research is now focussed on designing problem specific
operators to get better results. Second, a GA requires extensive
experimentation for the specification of several parameters so
that appropriate values can be identified. Third, GAs involve a
large degree of randomness and different runs may produce dif-
ferent results, so it is necessary to incorporate problem specific
domain knowledge into GA to reduce randomness and com-
putational time and current research is going on in this direc-
tion also. The methods are not only time-consuming, requiring
UNIX workstations to run on, but might also lead to false in-
terpretations and assumptions due to necessary simplifications.
It is therefore still mandatory to use biological reasoning and
common sense in evaluating the results delivered by a biocom-
puting program. Also, for evaluation of the trustworthiness of
the output of a program, it is necessary to understand its mathe-
matical/theoretical background to finally come up with a useful
and sense-full analysis.

Other potential bioinformatics tasks for which EA can be
used include the following:

1) characterization of protein content and metabolic path-
ways between different genomes;

2) identification of interacting proteins;
3) assignment and prediction of gene products;
4) large-scale analysis of gene expression levels;
5) mapping expression data to sequence, structural and bio-

chemical data.

REFERENCES

[1] P. Baldi and S. Brunak, Bioinformatics: The Machine Learning Approach.
Cambridge, MA: MIT Press, 1998.

[2] R. B. Altman, A. Valencia, S. Miyano, and S. Ranganathan, “Challenges
for intelligent systems in biology,” IEEE Intell. Syst., vol. 16, no. 6,
pp. 14–20, Nov./Dec. 2001.

[3] D. Goldberg, Genetic Algorithms in Optimization, Search, and Machine
Learning. Reading, MA: Addison-Wesley, 1989.

[4] D. Bhandari, C. A. Murthy, and S. K. Pal, “Genetic algorithm with elitist
model and its convergence,” Int. J. Pattern Rcognit. Artif. Intell., vol. 10,
no. 6, pp. 731–747, 1996.

PAL et al.: EVOLUTIONARY COMPUTATION IN BIOINFORMATICS: A REVIEW 613

[5] L. B. Booker, D. E. Goldberg, and J. H. Holland, “Classifier systems and
genetic algorithms,” Artif. Intell., vol. 40, no. 1–3, pp. 235–282, 1989.

[6] M. Mitchell, S. Forrest, and J. H. Holland, “The royal road for genetic
algorithms: Fitness landscapes and GA performance,” in Proc. 1st Eur.
Conf. Artificial Life, 1992.

[7] D. E. Goldberg and J. H. Holland, “Genetic algorithms and machine
learning,” Mach. Learn., vol. 3, pp. 95–100, 1988.

[8] J. H. Holland, Adaptation in Natural and Artificial Systems. Cambridge,
MA: MIT Press, 1992.

[9] L. Davis, Handbook of Genetic Algorithm. New York: Van Nostrand
Reinhold, 1991.

[10] J. Setubal and J. Meidanis, Introduction to Computational Molecular Bi-
ology. Boston, MA: Thomson, 1999.

[11] A. S. Wu and R. K. Lindsay, “A survey of intron research in genetics,”
in Proc. 4th Conf. Parallel Problem Solving from Nature, pp. 101–110,
1996.

[12] J. Chen, E. Antipov, B. Lemieux, W. Cedeno, and D. H. Wood, “DNA com-
puting implementing genetic algorithms,” in Evolution as Computation,
New York: Springer-Verlag, pp. 39-49, 1999.

[13] R. J. Parsons, S. Forrest, and C. Burks, “Genetic algorithms, operators,
and DNA fragment assembly,” Mach. Learn., vol. 21, no. 1–2, pp. 11–33,
1995.

[14] , “Genetic algorithms for DNA sequence assembly,” in Proc. 1st Int.
Conf. Intelligent Systems in Molecular Biology, pp. 310–318, 1993.

[15] R. J. Parsons and M. E. Johnson, “DNA fragment assembly and genetic
algorithms. New results and puzzling insights,” in Int. Conf. Intelligent
Systems in Molecular Biology, 1995, pp. 277–284.

[16] S. B. Needleman and C. D. Wunsch, “A general method applicable to the
search for similarities in the amino acid sequence of two proteins,” J. Mol.
Biol., vol. 48, pp. 443–453, 1970.

[17] T. F. Smith and M. S. Waterman, “Identification of common molecular
sequences,” J. Mol. Biol., vol. 147, pp. 195–197, 1981.

[18] E. Aart and V. P. Laarhoven, Simulated Annealing: A Review of Theory
and Applications. Norwell, MA: Kluwer, 1987.

[19] C. Lawrence, S. Altschul, M. Boguski, J. Liu, A. Neuwald, and J. Woot-
ton, “Detecting subtle sequence signals: A Gibbs sampling strategy for
multiple alignment,” Science, vol. 262, pp. 208–214, 1993.

[20] C. Notredame and D. G. Higgins, “SAGA: Sequence alignment by genetic
algorithm,” Nucleic Acids Res., vol. 24, no. 8, pp. 1515–1524, 1996.

[21] C. Zhang and A. K. C. Wong, “A genetic algorithm for multiple molecular
sequence alignment,” Bioinformatics, vol. 13, pp. 565–581, 1997.

[22] L. Davis, “Adapting operator probabilities in genetic algorithms,” in Proc.
3rd Int. Conf. Genetic Algorithms, J. D. Schaffer, Ed., 1989, pp. 61–69.

[23] T. Yokoyama, T. Watanabe, A. Taneda, and T. Shimizu, “A web server
for multiple sequence alignment using genetic algorithm,” Genome Inf.,
vol. 12, pp. 382–383, 2001.

[24] O. O’Sullivan, K. Suhre, C. Abergel, D. G. Higgins, and C. Notredame,
“3DCoffee: Combining protein sequences and structures within multiple
sequence alignments,” J. Mol. Biol., vol. 340, no. 2, pp. 385–395, 2004.

[25] C. Notredame, E. A. O’Brien, and D. G. Higgins, “RAGA: RNA sequence
alignment by genetic algorithm,” Nucleic Acids Res., vol. 25, no. 22,
pp. 4570–4580, 1997.

[26] J. D. Thompson, D. G. Higgins, and T. J. Gibson, “CLUSTAL
W: Improving the sensitivity of progressive multiple sequence align-
ment through sequence weighting, position-specific gap penalties and
weight matrix choice,” Nucleic Acids Res., vol. 22, pp. 4673–4680,
1994.

[27] C. Zhang and A. K. C. Wong, “A technique of genetic algorithm and
sequence synthesis for multiple molecular sequence alignment,” in Proc.
IEEE Int. Conf. Syst. Man, and Cybernetics, vol. 3, 1998, pp. 2442–2447.

[28] , “Toward efficient multiple molecular sequence alignment: A system
of genetic algorithm and dynamic programming,” IEEE Trans. Syst. Man,
Cybern. B, vol. 27, no. 6, pp. 918–932, Dec. 1997.

[29] T. Murata and H. Ishibuchi, “Positive and negative combination effects of
crossover and mutation operators in sequencing problems,” Evol. Comput.,
vol. 20–22, pp. 170–175, 1996.

[30] C. Zhang, “A genetic algorithm for molecular sequence comparison,”
in Proc. IEEE Int. Conf. Systems, Man, and Cybernetics, vol. 2, 1994,
pp. 1926–1931.

[31] J. D. Szustakowski and Z. Weng, “Protein structure alignment using a
genetic algorithm,” Proteins, vol. 38, no. 4, pp. 428–440, 2000.

[32] K. Hanada, T. Yokoyama, and T. Shimizu, “Multiple sequence alignment
by genetic algorithm,” Genome Inf., vol. 11, pp. 317–318, 2000.

[33] L. A. Anbarasu, P. Narayanasamy, and V. Sundararajan, “Multiple molec-
ular sequence alignment by island parallel genetic algorithm,” Current
Sci., vol. 78, no. 7, pp. 858–863, 2000.

[34] H. D. Nguyen, I. Yoshihara, K. Yamamori, and M. Yasunaga, “A parallel
hybrid genetic algorithm for multiple protein sequence alignment,” in
Proc. Congress Evolutionary Computation, vol. 1, 2002, pp. 309–314.

[35] C. Gaspin and T. Schiex, “Genetic algorithms for genetic mapping,” in
Proc. 3rd Eur. Conf. Artificial Evolution, 1997, pp. 145–156.

[36] J. Gunnels, P. Cull, and J. L. Holloway, “Genetic algorithms and simu-
lated annealing for gene mapping,” in Proc. 1st IEEE Conf. Evolutionary
Computation, 1994, pp. 385–390.

[37] H. Murao, H. Tamaki, and S. Kitamura, “A coevolutionary approach
to adapt the genotype-phenotype map in genetic algorithms,” in Proc.
Congress Evolutionary Computation, vol. 2, 2002, pp. 1612–1617.

[38] J. Fickett and M. Cinkosky, “A genetic algorithm for assembling chromo-
some physical maps,” in Proc. 2nd Int. Conf. Bioinformatics, Supercom-
puting, and Complex Genome Analysis, 1993, pp. 272–285.

[39] J. W. Fickett, “Finding genes by computer: The state of the art,” Trends
Genetics, vol. 12, no. 8, pp. 316–320, 1996.

[40] A. Kel, A. Ptitsyn, V. Babenko, S. Meier-Ewert, and H. Lehrach, “A ge-
netic algorithm for designing gene family-specific oligonucleotide sets
used for hybridization: The G protein-coupled receptor protein superfam-
ily,” Bioinformatics, vol. 14, no. 3, pp. 259–270, 1998.

[41] V. G. Levitsky and A. V. Katokhin, “Recognition of eukaryotic promoters
using a genetic algorithm based on iterative discriminant analysis,” In
Silico Biol., vol. 3, no. 1–2, pp. 81–87, 2003.

[42] S. Knudsen, “Promoter2.0: For the recognition of PolII promoter se-
quences,” Bioinformatics, vol. 15, pp. 356–361, 1999.

[43] N. M. Luscombe, D. Greenbaum, and M. Gerstein, “What is bioinformat-
ics? A proposed definition and overview of the field,” in Yearbook Medical
Informatics: Edmonton, AB, Canada: IMIA, 2001, pp. 83–100.

[44] J. Quackenbush, “Computational analysis of microarray data,” Nat. Rev.
Genetics, vol. 2, pp. 418–427, 2001.

[45] H. K. Tsai, J. M. Yang, and C. Y. Kao, “Applying genetic algorithms
to finding the optimal order in displaying the microarray data,” in Proc.
GECCO, 2002, pp. 610–617.

[46] H. K. Tsai, J. M. Yang, Y. F. Tsai, and C. Y. Kao, “An evolutionary
approach for gene expression patterns,” IEEE Trans. Inf. Technol. Biomed.,
vol. 8, no. 2, pp. 69–78, Jun. 2004.

[47] A. S. Wu and I. Garibay, “The proportional genetic algorithm: Gene
expression in a genetic algorithm,” Genetic Programm. Evol. Hardware,
vol. 3, no. 2, pp. 157–192, 2002.

[48] T. Akutsu, S. Miyano, and S. Kuhara, “Identification of genetic networks
from a small number of gene expression patterns under the boolean net-
work model,” in Proc. Pacific Symp. Biocomputing, vol. 99, 1999, pp. 17–
28.

[49] S. Ando and H. Iba, “Inference of gene regulatory model by genetic
algorithms,” in Proc. Congress Evolutionary Computation, vol. 1, 2001,
pp. 712–719.

[50] N. Behera and V. Nanjundiah, “Trans gene regulation in adaptive evolu-
tion: A genetic algorithm model,” J. Theore. Biol., vol. 188, pp. 153–162,
1997.

[51] S. Ando and H. Iba, “Quantitative modeling of gene regulatory network-
identifying the network by means of genetic algorithms,” presented at the
11th Genome Informatics Workshop, 2000.

[52] , “The matrix modeling of gene regulatory networks-reverse en-
gineering by genetic algorithms-,” in presented at the Atlantic Symp.
Computational Biology and Genome Information Systems and Technol-
ogy, 2001.

[53] D. Tominaga, M. Okamoto, Y. Maki, S. Watanabe, and Y. Eguchi, “Non-
linear numerical optimization technique based on a genetic algorithm for
inverse problems: Towards the inference of genetic networks,” Comput.
Science and Biology (Proc. German Conf. Bioinformatics), 1999, pp. 127–
140.

[54] P. O. Lewis, “A genetic algorithm for maximum likelihood phylogeny
inference using nucleotide sequence data,” Mol. Biol. Evol., vol. 15, no. 3,
pp. 277–283, 1998.

[55] A. R. Lemmon and M. C. Milinkovitch, “The metapopulation genetic
algorithm: An efficient solution for the problem of large phylogeny esti-
mation,” Proc. Nat. Acad. Sci., vol. 99, no. 16, pp. 10516–10521, 2002.

[56] K. Katoh, K. Kuma, and T. Miyata, “Genetic algorithm-based maximum-
likelihood analysis for molecular phylogeny,” J. Mol. Evol., vol. 53, no. 4-
5, pp. 477–484, 2001.

[57] H. Matsuda, “Protein phylogenetic inference using maximum likelihood
with a genetic algorithm,” Pacific Symp. Biocomputing, 1996, pp. 512–
523.

[58] A. Skourikhine, “Phylogenetic tree reconstruction using self-adaptive ge-
netic algorithm,” in IEEE Int. Symp. Bio-Informatics and Biomedical
Engineering, 2000, pp. 129–134.

614 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 36, NO. 5, SEPTEMBER 2006

[59] P. Baldi and P. F. Baisnee, “Sequence analysis by additive scales: DNA
structure for sequences and repeats of all lengths,” Bioinformatics, vol. 16,
pp. 865–889, 2000.

[60] C. Anselmi, G. Bocchinfuso, P. De Santis, M. Savino, and A. Scipioni,
“A theoretical model for the prediction of sequence-dependent nucleo-
some thermodynamic stability,” J. Biophys., vol. 79, no. 2, pp. 601–613,
2000.

[61] L. D. Landau and E. M. Lifshitz, Theory of Elasticity. New York:
Pergamon, 1970.

[62] M. L. Beckers, L. M. Buydens, J. A. Pikkemaat, and C. Altona, “Applica-
tion of a genetic algorithm in the conformational analysis of methylene-
acetal-linked thymine dimers in DNA: Comparison with distance ge-
ometry calculations,” J. Biomol. NMR, vol. 9, no. 1, pp. 25–34,
1997.

[63] R. V. Parbhane, S. Unniraman, S. S. Tambe, V. Nagaraja, and B. D. Kulka-
rni, “Optimum DNA curvature using a hybrid approach involving an ar-
tificial neural network and genetic algorithm,” J. Biomol. Struct. Dyn.,
vol. 17, no. 4, pp. 665–672, 2000.

[64] J. P. Adrahams and M. Breg, “Prediction of RNA secondary structure
including pseudoknotting by computer simulation,” Nucleic Acids Res.,
vol. 18, pp. 3035–3044, 1990.

[65] M. Waterman, “RNA structure prediction,” in Methods in Enzymology.
San Diego, CA: Academic, vol. 164, 1988.

[66] M. Zuker and P. Stiegler, “Optimal computer folding of large RNA se-
quences using thermo-dynamics and auxiliary information,” Nucleic Acids
Res., vol. 9, pp. 133–148, 1981.

[67] V. Batenburg, A. P. Gultyaev, and C. W. A. Pleij, “An APL-programmed
genetic algorithm for the prediction of RNA secondary structure,” J. The-
oret. Biol., vol. 174, no. 3, pp. 269–280, 1995.

[68] A. P. Gultyaev, V. Batenburg, and C. W. A. Pleij, “The computer simulation
of RNA folding pathways using an genetic algorithm,” J. Mol. Biol.,
vol. 250, pp. 37–51, 1995.

[69] K. C. Wiese and E. Glen, “A permutation-based genetic algorithm for
the RNA folding problem: A critical look at selection strategies, crossover
operators, and representation issues,” Biosystems, vol. 72, no. 1–2, pp. 29–
41, 2003.

[70] B. A. Shapiro and J. Navetta, “A massively parallel genetic algorithm for
RNA secondary structure prediction,” J. Supercomput., vol. 8, pp. 195–
207, 1994.

[71] B. A. Shapiro and J. C. Wu, “An annealing mutation operator in the genetic
algorithms for RNA folding,” Comput. Appl. Biosci., vol. 12, pp. 171–180,
1996.

[72] B. A. Shapiro, J. C. Wu, D. Bengali, and M. J. Potts, “The massively
parallel genetic algorithm for RNA folding: MIMD implementation and
population variation,” Bioinformatics, vol. 17, no. 2, pp. 137–148,
2001.

[73] P. Chou and G. Fasmann, “Prediction of the secondary structure of proteins
from their amino acid sequence,” Adv. Enzymol., vol. 47, pp. 145–148,
1978.

[74] S. K. Riis and A. Krogh, “Improving prediction of protein secondary struc-
ture using structured neural networks and multiple sequence alignments,”
J. Comput. Biol., vol. 3, pp. 163–183, 1996.

[75] N. Qian and T. J. Sejnowski, “Predicting the secondary structure of glob-
ular proteins using neural network models,” J. Mol. Biol., vol. 202, no. 4,
pp. 865–884, 1988.

[76] A. Salamov and V. Solovyev, “Prediction of protein secondary structure
by combining nearest-neighbor algorithms and multiple sequence align-
ments,” J. Mol. Biol., vol. 247, pp. 11–15, 1995.

[77] S. Salzberg and S. Cost, “Predicting protein secondary structure with a
nearest-neighbor algorithm,” J. Mol. Biol., vol. 227, pp. 371–374, 1992.

[78] J. Garnier, J. F. Gibrat, and B. Robson, “GOR method for predicting
protein secondary structure from amino acid sequence,” in Methods in
Enzymology, vol. 266, 1996, pp. 540–553.

[79] R. Unger and J. Moult, “On the applicability of genetic algorithms to
protein folding,” in Proc. Hawaii Int. Conf. System Sciences, vol. 1, 1993,
pp. 715–725.

[80] , “Genetic algorithms for protein folding simulations,” J. Mol. Biol.,
vol. 231, no. 1, pp. 75–81, 1993.

[81] , “A genetic algorithms for three dimensional protein folding simu-
lations,” in Int. Conf. Genetic Algorithms, 1993, pp. 581–588.

[82] A. Patton, W. P., III, and E. Goldman, “A standard GA approach to native
protein conformation prediction,” in Proc. Int. Conf. Genetic Algorithms,
1995, pp. 574–581.

[83] N. Krasnogor, W. E. Hart, J. Smith, and D. A. Pelta, “Protein structure pre-
diction with evolutionary algorithms,” in Proc. Genetic and Evolutionary
Computation, vol. 2, 1999, pp. 1596–1601.

[84] N. Krasnogor, D. Pelta, P. M. Lopez, P. Mocciola, and E. Canal, “Genetic
algorithms for the protein folding problem: A critical view,” in Proc.
Engineering Intelligent Systems, 1998

[85] L. Cooper, D. Corne, and M. Crabbe, “Use of a novel hill-climbing genetic
algorithm in protein folding simulations,” Comput. Biol. Chem., vol. 27,
no. 6, pp. 575–580, 2003.

[86] S. Bandyopadhyay, “An efficient technique for superfamily classification
of amino acid sequences: Feature extraction, fuzzy clustering and proto-
type selection,” Fuzzy Sets Syst., vol. 152, pp. 5–16, 2005.

[87] U. Maulik and S. Bandyopadhyay, “Fuzzy partitioning using real coded
variable length genetic algorithm for pixel cassification,” IEEE Trans.
Geosci. Remote Sens., vol. 41, no. 5, pp. 1075–1081, May 2003.

[88] H. Iijima and Y. Naito, “Incremental prediction of the side-chain confor-
mation of proteins by a genetic algorithm,” in Proc. IEEE Conf. Evolu-
tionary Computation, vol. 1, 1994, pp. 362–367.

[89] I. Ono, H. Fujiki, M. Ootsuka, N. Nakashima, N. Ono, and S. Tate, “Global
optimization of protein 3-dimensional structures in NMR by a genetic
algorithm,” in Proc. Congress Evolutionary Computation, vol. 1, 2002,
pp. 303–308.

[90] B. Contreras-Moreira, P. W. Fitzjohn, M. Offman, G. R. Smith, and P.
A. Bates, “Novel use of a genetic algorithm for protein structure prediction:
Searching template and sequence alignment space,” Proteins, vol. 53,
no. 6, pp. 424–429, 2003.

[91] P. Saxena, I. Whang, Y. Voziyanov, C. Harkey, P. Argos, M. Jayaram, and
T. Dandekar, “Probing Flp: A new approach to analyze the structure of
a DNA recognizing protein by combining the genetic algorithm, muta-
genesis and non-canonical DNA target sites,” Biochem. Biophys. Acta.,
vol. 1340, no. 2, pp. 187–204, 1997.

[92] J. T. Pedersen and J. Moult, “Protein folding simulations with genetic
algorithms and a detailed molecular description,” J. Mol. Biol., vol. 269,
no. 2, pp. 240–259, 1997.

[93] M. Khimasia and P. Coveney, “Protein structure prediction as a hard opti-
mization problem: The genetic algorithm approach,” Mol. Simul., vol. 19,
pp. 205–226, 1997.

[94] R. Konig and T. Dandekar, “Improving genetic algorithms for protein
folding simulations by systematic crossover,” BioSystems, vol. 50, pp. 17–
25, 1999.

[95] C. A. Del Carpio, “A parallel genetic algorithm for polypeptide three
dimensional structure prediction: A transputer implementation,” J. Chem.
Inf. Comput. Sci., vol. 36, no. 2, pp. 258–269, 1996.

[96] Rabow and H. A. Scheraga, “Improved genetic algorithm for the protein
folding problem by use of a cartesian combination operator,” Protein Sci.,
vol. 5, pp. 1800–1815, 1996.

[97] J. R. Gunn, “Sampling protein conformations using segment libraries and
a genetic algorithm,” J. Chemi. Phys., vol. 106, pp. 4270–4281, 1997.

[98] A. C. W. May and M. S. Johnson, “Improved genetic algorithm-based pro-
tein structure comparisons: Pairwise and multiple superpositions,” Protein
Eng., vol. 8, pp. 873–882, 1995.

[99] M. J. Bayley, G. Jones, P. Willett, and M. P. Williamson, “Genfold: A
genetic algorithm for folding protein structures using NMR restraints,”
Protein Sci., vol. 7, no. 2, pp. 491–499, 1998.

[100] Z. Sun, X. Xia, Q. Guo, and D. Xu, “Protein structure prediction in a
210-type lattice model: Parameter optimization in the genetic algorithm
using orthogonal array,” J. Protein Chem., vol. 18, no. 1, pp. 39–46, 1999.

[101] S. Schulze-Kremer, “Genetic algorithms and protein folding. Methods in
molecular biology,” Protein Structure Prediction: Methods and Protocols,
vol. 143, pp. 175–222, 2000.

[102] A. M. Lesk, Introduction to Bioinformatics. London, U.K.: Oxford
Univ. Press, 2002.

[103] Y. Xiao and D. Williams, “Genetic algorithms for docking of actinomycin
D and deoxyguanosine molecules with comparison to the crystal struc-
ture of actinomycin ddeoxyguanosine complex,” J. Phys. Chem., vol. 98,
pp. 7191–7200, 1994.

[104] D. R. Westhead, D. E. Clark, D. Frenkel, J. Li, C. W. Murray, B. Robson,
and B. Waszkowycz, “PRO-LIGAND: An approach to de novo molecular
design. 3. A genetic algorithm for structure refinement,” J. Comput.- Aided
Mol. Design, vol. 9, no. 2, pp. 139–148, 1995.

[105] G. M. Morris, D. S. Goodsell, R. S. Halliday, R. Huey, W. E. Hart, R.
K. Belew, and A. J. Olsoni, “Automated docking using a Lamarckian ge-
netic algorithm and an empirical binding free energy function,” J. Comput.
Chem., vol. 19, no. 14, pp. 1639–1662, 1998.

[106] A. Bagchi, S. Bandyopadhyay, and U. Maulik, “Determination of molec-
ular structure for drug design using variable string length genetic algo-
rithm,” in Workshop on Soft Computing, High Performance Computing
(HiPC) Workshops 2003: New Frontiersin High-Performance Computing,
Hyderabad, India, 2003, pp. 145–154.

PAL et al.: EVOLUTIONARY COMPUTATION IN BIOINFORMATICS: A REVIEW 615

[107] S. Bandyopadhyay, A. Bagchi, and U. Maulik, “Active site driven ligand
design: An evolutionary approach,” J. Bioinf. Comput. Biol., vol. 3, no. 5,
pp. 1053–1070, 2005.

[108] C. Chen, L. H. Wang, C. Kao, M. Ouhyoung, and W. Chen, “Molecular
binding in structure-based drug design: A case study of the population-
based annealing genetic algorithms,” in Proc. IEEE Int. Conf. Tools with
Artificial Intelligence, 1998, pp. 328–335.

[109] L. H. Wang, C. Kao, M. Ouh-Young, and W. Chen, “Molecular binding:
A case study of the population-based annealing genetic algorithms,” in
Proc. IEEE Int. Conf. Evolutionary Computation, 1995, pp. 50–55.

[110] L. H. Wang, C. Kao, M. Ouh-Young, and W. C. Cheu, “Using an an-
nealing genetic algorithm to solve global energy minimization problem
in molecular binding,” in Proc. 6th Int. Conf. Tools with Artificial Intelli-
gence, 1994, pp. 404–410.

[111] C. D. Rosin, R. S. Halliday, W. E. Hart, and R. K. Belew, “A comparison
of global and local search methods in drug docking,” in Proc. Int. Conf.
Genetic Algorithms, 1997, pp. 221–228.

[112] J. M. Yang and C. Y. Kao, “A family competition evolutionary algorithm
for automated docking of flexible ligands to proteins,” IEEE Trans. Inf.
Technol. Biomed., vol. 4, no. 3, pp. 225–237, Sep. 2000.

[113] C. M. Oshiro, I. D. Kuntz, and J. S. Dixon, “Flexible ligand docking
using a genetic algorithm,” J. Comput.-Aided Mol. Design, vol. 9, no. 2,
pp. 113–130, 1995.

[114] D. E. Clark and D. R. Westhead, “Evolutionary algorithms in computer-
aided molecular design,” J. Comput.-Aided Mol. Design, vol. 10, no. 4,
pp. 337–358, 1996.

[115] V. Venkatasubramanian, K. Chan, and J. Caruthers, “Computer aided
molecular design using genetic algorithms,” Comput. Chem. Eng., vol. 18,
no. 9, pp. 833–844, 1994.

[116] D. M. Deaven and K. O. Ho, “Molecular-geometry optimization with
a genetic algorithm,” Phys. Rev. Lett., vol. 75, no. 2, pp. 288–291,
1995.

[117] G. Jones, P. Willett, and R. C. Glen, “Molecular recognition of receptor
sites using a genetic algorithm with a description of desolvation,” J. Mol.
Biol., vol. 245, pp. 43–53, 1995.

[118] G. Jones, P. Willett, R. C. Glen, A. R. Leach, and R. Taylor, “Further
development of a genetic algorithm for ligand docking and its applica-
tion to screening combinatorial libraries,” American Chemical Society
Symposium Series, vol. 719, Washington, DC: ACS, 1999, pp. 271–291.

[119] D. B. McGarrah and R. S. Judson, “Analysis of the genetic algorithm
method of molecular conformation determination,” J. Comput. Chem.,
vol. 14, no. 11, pp. 1385–1395, 1993.

[120] T. Hou, J. Wang, L. Chen, and X. Xu, “Automated docking of peptides
and proteins by using a genetic algorithm combined with a tabu search,”
Protein Eng., vol. 12, pp. 639–647, 1999.

[121] P. Willet, “Genetic algorithms in molecular recognition and design,”
Trends Biotechnol., vol. 13, no. 12, pp. 516–521, 1995.

Sankar K. Pal (M’81–SM’84–F’93) received the
Ph.D. degree in radio physics and electronics from
the University of Calcutta, Calcutta, India, in 1974,
and the Ph.D. degree in electrical engineering along
with DIC from Imperial College, University of
London, London, U.K., in 1982.

He is the Director and Distinguished Scientist of
the Indian Statistical Institute, Calcutta. He founded
the Machine Intelligence Unit in 1993, and the Cen-
ter for Soft Computing Research: A National Facility
in 2004 at the Institute in Calcutta. He worked at the

University of California, Berkeley and the University of Maryland, College Park,
in 1986–1987; the NASA Johnson Space Center, Houston, TX, in 1990–1992
and 1994; and in the U.S. Naval Research Laboratory, Washington, DC, in 2004.
He is a co-author of 13 books and about 300 research publications. Since 1997
he has been serving as a Distinguished Visitor of the IEEE Computer Society for
the Asia-Pacific Region, and held several visiting positions in Hong Kong and
Australian universities. He is an Associate Editor of Pattern Recognition Let-
ters, Neurocomputing, Applied Intelligence, Information Sciences, Fuzzy Sets
and Systems, Fundamenta Informaticae and the International Journal of Com-
putational Intelligence and Applications;

Prof. Pal is a Fellow of the Third World Academy of Sciences, International
Association for Pattern recognition, and all the four National Academies for
Science/Engineering in India. He has received the 1990 S.S. Bhatnagar Prize
(which is the most coveted award for a scientist in India), and many pres-
tigious awards in India and abroad including the 1999 G. D. Birla Award,
1998 Om Bhasin Award, 1993 Jawaharlal Nehru Fellowship, 2000 Khwarizmi
International Award from the Islamic Republic of Iran, 2000–2001 FICCI
Award, 1993 Vikram Sarabhai Research Award, 1993 NASA Tech Brief Award,
1994 IEEE TRANSACTION NEURAL NETWORKS Outstanding Paper Award, 1995
NASA Patent Application Award, 1997 IETE-R. L. Wadhwa Gold Medal, and
the 2001 INSA-S.H. Zaheer Medal. He is an Associate Editor of the IEEE
TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, and the
IEEE TRANSACTIONS NEURAL NETWORKS He is a Member, Executive Advisory
Editorial Board, IEEE TRANSACTIONS FUZZY SYSTEMS, Int. Journal on Image
and Graphics, and Int. Journal of Approximate Reasoning; and a Guest Editor
of IEEE Computer.

Sanghamitra Bandyopadhyay (SM’05) received
the B.Sc. and B.Tech. degrees in physics and com-
puter science in 1988 and 1992, respectively, the Mas-
ters degree in computer science from the Indian In-
stitute of Technology (IIT), Kharagpur, in 1994, and
the Ph.D. degree in computer science from the Indian
Statistical Institute, Calcutta, in 1998.

Currently, she is an Associate Professor at the
Indian Statistical Institute. She has worked for Los
Alamos National Laboratory, in 1997, as a Graduate
Research Assistant, in the University of New South

Wales, in 1999, as a Post Doctoral Fellow, in the Department of Computer Sci-
ence and Engineering, University of Texas at Arlington, in 2001 as Researcher,
and in the Department of Computer Science and Engineering, University of
Maryland, in 2004 as Visiting Research Faculty. Her research interests include
evolutionary and soft computation, pattern recognition, data mining, bioinfor-
matics, parallel and distributed systems and VLSI. She has published over 70
articles in international journals, conference, and workshop proceedings, edited
books and journal special issues, and served on the committees of several confer-
ences and workshops. She is on the editorial board of the International Journal
on Computational Intelligence.

Dr. Bandyopadhyay is the first recipient of the Dr. Shanker Dayal Sharma
Gold Medal and Institute Silver Medal for being the best all round post graduate
performer in IIT, Kharagpur in 1994. She received the Indian National Sci-
ence Academy and the Indian Science Congress Association Young Scientist
Awards in 2000, as well as the Indian National Academy of Engineering Young
Engineers’ Award in 2002. She is serving as the Program Co-Chair of the 1st In-
ternational Conference on Pattern Recognition and Machine Intelligence, 2005,
to be held in Kolkata, India, and has served as the Tutorial Co-Chair, World
Congress on Lateral Computing, 2004, held in Bangalore, India.

Shubhra Sankar Ray received the M.Sc. and
M.Tech. degrees in electronic science and radio-
physics and electronics from the University of
Calcutta, Kolkata, India, in 2000 and 2002, respec-
tively.

Since June 2003, he has been a Senior Research
Fellow of the Council of Scientific and Industrial
Research, New Delhi, India, working at the Ma-
chine Intelligence Unit, Indian Statistical Institute,
Kolkata. His research interests include bioinformat-
ics, evolutionary computation, neural networks, and

data mining.

CODEC 04 SPECIAL SECTION

Bioinformatics in neurocomputing framework

S.S. Ray, S. Bandyopadhyay, P. Mitra and S.K. Pal

Abstract: Different bioinformatics tasks like gene sequence analysis, gene finding, protein structure
prediction and analysis, gene expression with microarray analysis and gene regulatory network
analysis are described along with some classical approaches. The relevance of intelligent systems
and neural networks to these problems is mentioned. Different neural network based algorithms to
address the aforesaid tasks are then presented. Finally some limitations of the current research
activity are provided. An extensive bibliography is included.

1 Introduction

Over the past few decades, major advances in the field of
molecular biology, coupled with advances in genomic
technologies, have led to an explosive growth in the
biological information generated by the scientific commu-
nity. This deluge of genomic information has, in turn, led to
an absolute requirement for computerised databases to
store, organise and index the data, and for specialised tools
to view and analyse the data.

Bioinformatics can be viewed as ‘the use of computa-
tional methods to make biological discoveries’ [1]. It is an
interdisciplinary field involving biology, computer science,
mathematics and statistics to analyse biological sequence
data, genome content and arrangement, and to predict the
function and structure of macromolecules. The ultimate
goal of the field is to enable the discovery of new biological
insights in addition to create a global perspective from
which unifying principles in biology can be derived [2].
There are three important sub-disciplines within bioinfor-
matics:

a) development of new algorithms and models to assess
different relationships among the members of a large
biological data set in a way that allows researchers to access
existing information and to submit new information as they
are produced;

b) analysis and interpretation of various types of data
including nucleotide and amino acid sequences, protein
domains, and protein structures; and

c) development and implementation of tools that enable
efficient access and management of different types of
information.

Artificial neural networks (ANN), a biologically inspired
technology, are machinery for adaptation and curve fitting
and are guided by the principles of biological neural
networks. ANN have been studied for many years with the
hope of achieving human like performance, particularly in

the field of pattern recognition. They are efficient adaptive
and robust classifiers, producing near optimal solutions and
achieving high speed via massive parallelism. Therefore, the
application of ANN for solving certain problems in
bioinformatics, which need optimisation of computation
requirements, and robust, fast and close approximate
solutions, appears to be appropriate and natural. Moreover,
the errors generated in experiments with bioinformatics
data can be handled with the robust characteristics of ANN
and minimised during the trainnig process. The problem of
integrating ANN and bioinformatics constitutes a new
research area.

This article provides a survey of the various neural
network based techniques that have been developed over
the past few years for different bioinformatics tasks.

2 Elements of bioinformatics

Deoxyribonucleic acid (DNA) and proteins are biological
macromolecules built as long linear chains of chemical
components. DNA strands consist of a large sequence of
nucleotides, or bases. For example there are more than
three billion bases in human DNA sequences. DNA plays a
fundamental role in different biochemical processes of living
organisms in two respects. First it contains the templates for
the synthesis of proteins, which are essential molecules for
any organism [3]. The second role in which DNA is essential
to life is as a medium to transmit hereditary information
(namely the building plans for proteins) from generation to
generation.

The units of DNA are called nucleotides. One nucleotide
consists of one nitrogen base, one sugar molecule
(deoxyribose) and one phosphate. Four nitrogen bases are
denoted by one of the letters A (adenine), C (cytosine), G
(guanine) and T (thymine). A linear strand of DNA is
paired to a complementary strand. The complementary
property stems from the ability of the nucleotides to
establish specific pairs (A–T and G–C). The pair of
complementary strands then forms the double helix that
was first suggested by Watson and Crick in 1953. Each
strand therefore carries the entire information and the
biochemical machinery guarantees that the information can
be copied over and over again even when the ‘original’
molecule has long since vanished.

A gene is primarily made up of a sequence of triplets of
the nucleotides (exons). Introns (non-coding sequence) may
also be present within a gene. Not all portions of the DNA
sequences are coding. A coding zone indicates that it is a

The authors are with Machine Intelligence Unit, Indian Statistical Institute,
Kolkata 700108, India

E-mail: shubhra_r@isical.ac.in

r IEE, 2005

IEE Proceedings online no. 20045051

doi:10.1049/ip-cds:20045051

Paper first received 16th June 2004 and in final revised form 5th October 2004

556 IEE Proc.-Circuits Devices Syst., Vol. 152, No. 5, October 2005

template for a protein. As an example, for the human
genome only 3–5% of the portions are coding, i.e., they
constitute the gene. There are sequences of nucleotides
within the DNA that are spliced out progressively in the
process of transcription and translation. In brief, the DNA
consists of three types of non-coding sequences (shown
schematically in Fig. 1).

1. Intergenic regions: regions between genes that are ignored
during the process of transcription.

2. Intragenic regions (or introns): regions within the genes
that are spliced out from the transcribed RNA to yield the
building blocks of the genes, referred to as exons.

3. Pseudogenes: genes that are transcribed into the RNA
and stay there, without being translated, owing to the action
of a nucleotide sequence.

Proteins are made up of 20 different amino acids (or
‘residues’), which are denoted by 20 different letters of the
alphabet. Each of the 20 amino acids is coded by one or
more triplets (or codons) of the nucleotides making up the
DNA. Based on the genetic code the linear string of DNA is
translated into a linear string of amino acids, i.e., a protein
via mRNA [3].

3 Bioinformatics tasks

The different biological problems studied within the scope
of bioinformatics can be broadly classified into two
categories: genomics and proteomics which include genes,
proteins, and amino acids. We describe below different
tasks involved in their analysis along with their utilities.

3.1 Gene sequence analysis
The evolutionary basis of sequence alignment is based on
the principles of similarity and homology [4]. Similarity is a
quantitative measure of the fraction of two genes which are
identical in terms of observable quantities. Homology is
the conclusion drawn from data that two genes share a
common evolutionary history; no metric is associated with
this. The tasks of sequence analysis are as follows.

3.1.1 Sequence alignment: An alignment is a
mutual arrangement of two or more sequences, that
exhibits where the sequences are similar, and where they
differ. An optimal alignment is one that exhibits the most
correspondences and the least differences. It is the alignment
with the highest score but may or may not be biologically
meaningful. Basically there are two types of alignment
methods, global alignment and local alignment. Global
alignment [5] maximises the number of matches between the
sequences along the entire length of the sequence. Local
alignment [6] gives a highest scoring to local match between
two sequences.

3.1.2 Pattern searching: This deals with searches
for a nucleic pattern in a nucleic acid sequence, in a set of
sequences or in a databank (e.g. INFO-BIOGEN) [7]. It is
the potential for uncovering evolutionary relationships and

patterns between different forms of life. With the aid of
nucleotide and protein sequences, it should be possible to
find the ancestral ties between different organisms. So far,
experience indicates that closely related organisms have
similar sequences and that more distantly related organisms
have more dissimilar sequences. Proteins that show a
significant sequence conservation indicating a clear evolu-
tionary relationship are said to be from the same protein
family. By studying protein folds (distinct protein building
blocks) and families, scientists are able to reconstruct the
evolutionary relationship between two species and to
estimate the time of divergence between two organisms
since they last shared a common ancestor.

3.1.3 Gene finding and promoter identifica-
tion: In general a DNA strand consists of a large sequence
of nucleotides, or bases. Owing to the huge size of the
database, manual searching of genes, which code for
proteins, is not practical. Therefore automatic identification
of the genes from the large DNA sequences is an important
problem in bioinformatics [8]. A cell mechanism recognises
the beginning of a gene or gene cluster with the help of a
promoter. The promoter is a region before each gene in the
DNA that serves as an indication to the cellular mechanism
that a gene is ahead. For example, the codon AUG (which
codes for methionine) also signals the start of a gene.
Recognition of regulatory sites in DNA fragments has
become particularly popular because of the increasing
number of completely sequenced genomes and mass
application of DNA chips.

Promoters are key regulatory sequences that are
necessary for the initiation of transcription. Experimental
analysis has identified fewer than 10% of the potential
promoter regions, assuming that there are at least 30,000
promoters in the human genome, one for each gene. On a
genome-wide scale, pattern-based and genomic context-
based computational approaches can suggest possible
transcription factor-binding regions, but the rate of false-
positive predictions is very high.

3.2 Protein analysis
Proteins are polypeptides, formed within cells as a linear
chain of amino acids [9]. Within and outside of cells,
proteins serve a myriad of functions, including structural
roles (cytoskeleton), as catalysts (enzymes), transporters to
ferry ions and molecules across membranes, and hormones
to name just a few. There are twenty different amino acids
that make up essentially all proteins on earth. Different
tasks involved in protein analysis are as follows.

3.2.1 Multiple sequence alignment: Multiple
amino acid sequence alignment techniques [1] are usually
performed to fit one of the following scopes: (a) finding the
consensus sequence of several aligned sequences; (b) helping
in the prediction of the secondary and tertiary structures of
new sequences; and (c) providing a preliminary step in
molecular evolution analysis using phylogenetic methods
for constructing phylogenetic trees.

In order to characterise protein families, one needs to
identify shared regions of homology in a multiple sequence
alignment; (this happens generally when a sequence search
reveals homologies in several sequences). The clustering
method can do alignments automatically but is subjected to
some restrictions. Manual and eye validations are necessary
in some difficult cases. The most practical and widely used
method in multiple sequence alignment is the hierarchical
extensions of pairwise alignment methods, where the

junk exon junk

intron intron

exon exon

IRintergenic
region (IR)

gene

Fig. 1 Various parts of DNA

IEE Proc.-Circuits Devices Syst., Vol. 152, No. 5, October 2005 557

principal is that multiple alignments are achieved by
successive applications of pairwise methods.

3.2.2 Protein motif search: A protein motif search
[8] allows searching for a personal protein pattern in a
sequence (personal sequence or an entry in a gene bank).
Proteins are derived from a limited number of basic
building blocks (domains). Evolution has shuffled these
modules giving rise to a diverse repertoire of protein
sequences, as a result proteins can share a global or
local relationship. Protein motif search is a technique
for searching sequence databases to uncover common
domains/motifs of biological significance that categorise a
protein into a family.

3.2.3 Structural genomics: Structural genomics is
the prediction of the 3-dimensional structure of a protein
from the primary amino acid sequence [10]. This is one of
the most challenging tasks in bioinformatics. The four levels
of protein structure (Fig. 2) are

(a) primary structure: the sequence of amino acids that
compose the protein,

(b) secondary structure: the spatial arrangement of the
atoms constituting the main protein backbone, such as
alpha helices and beta strands,

(c) tertiary structure: formed by packing secondary
structural elements into one or several compact globular
units called domains, and

(d) final protein may contain several polypeptide chains
arranged in a quaternary structure.

Sequence similarity methods can predict the secondary
and tertiary structures based on homology to known
proteins. Secondary structure prediction can be made using
Chou–Fasman [10], GOR, neural network, and nearest
neighbour methods. Methods for tertiary structure predic-
tion involve energy minimisation, molecular dynamics, and
stochastic searches of conformational space.

3.3 Gene expression and microarrays
Gene expression is the process by which a gene’s coded
information is converted into the structures present and
operating in the cell. Expressed genes include those that are
transcribed into mRNA and then translated into protein
and those that are transcribed into RNA but not translated
into protein (e.g., transfer and ribosomal RNA). Not all
genes are expressed and gene expression involves the study
of the expression level of genes in the cells under different
conditions. Conventional wisdom is that gene products that
interact with each other are more likely to have similar
expression profiles than if they do not [11].

Microarray technology [12] allows expression levels of
thousands of genes to be measured at the same time.
Comparison of gene expression between normal and
diseased (e.g., cancerous) cells are also done by microarray.
There are several names for this technology for example
DNA microarrays, DNA arrays, DNA chips, gene chips.
A microarray is typically a glass (or some other material)
slide, on to which DNA molecules are attached at fixed
locations (spots). There may be tens of thousands of spots
on an array, each containing a huge number of identical
DNA molecules (or fragments of identical molecules), of
lengths from twenty to hundreds of nucleotides. For gene
expression studies, each of these molecules ideally should
identify one gene or one exon in the genome, however, in
practice this is not always so simple and may not even be
generally possible owing to families of similar genes in a
genome. The spots are either printed on the microarrays by
a robot, or synthesised by photolithography (similar to
computer chip production) or by ink-jet printing.

Many unanswered, and important, questions could
potentially be answered by correctly selecting, assembling,
analysing, and interpreting microarray data. Clustering is
commonly used in microarray experiments to identify
groups of genes that share similar expressions. Genes that
are similarly expressed are often co-regulated and involved
in the same cellular processes. Therefore, clustering suggests
functional relationships between groups of genes. It may
also help in identifying promoter sequence elements that are
shared among genes. In addition, clustering can be used to
analyse the effects of specific changes in experimental
conditions and may reveal the full cellular responses
triggered by those conditions.

3.4 Gene regulatory network analysis
Another important and interesting question in biology is
how gene expression is switched on and off, i.e., how genes
are regulated [1]. Since almost all cells in a particular
organism have an identical genome, differences in gene
expression and not the genome content are responsible for
cell differentiation (how different cell types develop from a
fertilised egg) during the life of the organism.

Gene regulation in eukaryotes, is not well understood,
but there is evidence that an important role is played by a
type of proteins called transcription factors. The transcrip-
tion factors can attach (bind) to specific parts of the DNA,
called transcription factor binding sites (i.e., specific,
relatively short combinations of A, T, C or G), which are
located in so-called promoter regions. Specific promoters
are associated with particular genes and are generally not
too far from the respective genes, though some regulatory
effects can be located as far as 30,000 bases away, which
makes the definition of the promoter difficult.

Transcription factors control gene expression by binding
the gene’s promoter and either activating (switching on) the
gene’s transcription, or repressing it (switching it off).
Transcription factors are gene products themselves, and

a
primary structure

b
secondary structure

c
tertiary structure

d
quaternary structure

Fig. 2 Different levels of protein structures

558 IEE Proc.-Circuits Devices Syst., Vol. 152, No. 5, October 2005

therefore, in turn, can be controlled by other transcription
factors. Transcription factors can control many genes, and
some (probably most) genes are controlled by combinations
of transcription factors. Feedback loops are possible.
Therefore we can talk about gene regulation networks.
The understanding, describing and modelling of such gene
regulation networks is one of the most challenging problems
in functional genomics. Microarrays and computational
methods are playing a major role in attempts to reverse
engineer gene networks from various observations. Note
that in reality the gene regulation is likely to be a stochastic
and not a deterministic process. Traditionally molecular
biology has followed a so-called reductionist approach
mostly concentrating on a study of a single or very few
genes in any particular research project. With genomes
being sequenced, this is now changing into a so-called
systems approach.

4 Relevance of neural networks in bioinformatics

Artificial neural network (ANN) models try to emulate the
biological neural network with electronic circuitry. Re-
cently, ANNs have found widespread use for classification
tasks and function approximation in many fields of
medicinal chemistry and bioinformatics. For these kinds
of data analysis mainly two types of networks are
employed; the ‘supervised’ neural network (SNN) and the
‘unsupervised’ neural network (UNN). The main applica-
tions of SNNs (e.g. multilayer perceptrons (MLPs) are
feedforward neural networks trained with the standard
backpropagation algorithm) are function approximation,
classification, pattern recognition and feature extraction,
and prediction. Moreover, they are able to detect second
and higher order correlations in patterns. This is specially
important in biological systems, which frequently display
nonlinear behaviour. These networks require a set of
molecular compounds with known activities to model
structure-activity relationships and are able to determine the
relevant features in the data set, usually by means of
training processes. This principle coined the term ‘super-
vised’ networks. Correspondingly, ‘unsupervised’ networks
(e.g. Kohonen self-organising maps) can be applied to
clustering and feature extraction tasks even without prior
knowledge of molecular activities or properties. Unsuper-
vised learning has the advantage that no previous knowl-
edge about the system under study is required.

The main characteristics of ANNs are:

a) adaptability to new data/environment,

b) robustness/ruggedness to failure of components,

c) speed via massive parallelism, and

d) optimality w.r.t. error.

Let us now explain the functioning of an ANN in
bioinformatics with an example of protein secondary
structure prediction from a linear sequence of amino acids
(Fig. 3).

Step 1: In the ANN usually a certain number of input
‘nodes’ are each connected to every node in a hidden layer.

Step 2: Every residue in a protein data bank (PDB) entry
can be associated to one of the three secondary structures
(helix, sheet or neither: coil). ANNs are designed with 21
input nodes (one for each residue including a null residue)
and three output nodes coding for each of the three possible
secondary structure assignments (helix, sheet and coil).

Step 3: Each node in the hidden layer is then connected to
every node in the final output layer.

Step 4: The input and output nodes are restricted to binary
values (1 or 0) when loading the data onto the network
during training and the weights are then modified by the
program itself during the training process.

Step 5: Helix can be coded as 0, 0, 1 on the three output
nodes; sheet can be coded as 0, 1, 0 and coil as 1, 0, 0. A
similar binary coding scheme can be used for the 20 input
nodes for the 20 amino acids.

Step 6: To consider a moving window of n residues at a
time, input layer should contain 20� n nodes plus one node
at each position for a null residue.

Step 7: Each node will ‘decide’ to send a signal to the nodes
it is connected to, based on evaluating its transfer function
after all of its inputs and connection weights have been
summed.

Step 8: Over 100 protein structures were used to train the
network.

Step 9: Training proceeds by holding a particular data
constant onto both the input and output nodes and
iterating the network in a process that modifies the
connection weights until the changes made to them
approach zero.

Step 10: When such convergence is reached, the network is
said to be trained and is ready to receive new (unknown)
experimental data.

Step 11: Now the connection weights are not changed and
the values of the hidden and output nodes are calculated in
order to determine the structure of the input sequence of
proteins.

Selection of unbiased and normalised training data,
however, is probably just as important as the network
architecture in the design of a successful NN.

5 Anns in bioinformatics

Let us now describe the different attempts made using
ANNs in certain tasks of bioinformatics in the broad
domains of sequence analysis, structure prediction, and
gene analysis described in Section 3.

5.1 Sequence alignment
Given inputs extracted from an aligned column of DNA
bases and the underlying Perkin Elmer Applied Biosystems
(ABI) fluorescent traces, Allex et al. [13] trained a neural
network to determine correctly the consensus base for the
column. They compared five representations empirically;
one uses only base calls and the others include trace

...M N T Q A C D F G P V T A C D TC.....

Fig. 3 A linear chain of amino acids is applied as input to the
ANN

IEE Proc.-Circuits Devices Syst., Vol. 152, No. 5, October 2005 559

information. The networks that incorporate trace informa-
tion into their input representations attained the most
accurate results for consensus sequence. Consensus accura-
cies ranging from 99.26% to 99.98% are acheived for
coverages from two to six aligned sequences. In contrast,
the network that only uses base calls in its input
representation has over double that error rate.

In [14] a molecular alignment method with the Hopfield
neural network (HNN) is discussed. Molecules are
represented by four kinds of chemical properties (hydro-
phobic group, hydrogen-bonding acceptor, hydrogen-
bonding donor, and hydrogen-bonding donor/acceptor),
and then those properties between two molecules
correspond to each other using HNN. The method is
applied to three-dimensional quantitative structure-activity
relationship (3D-QSAR) analysis and it reproduced success-
fully the real molecular alignments obtained from X-ray
crystallography.

GenTHREADER is a neural network architecture that
predicts similarity between gene sequences [15]. The effects
of sequence alignment score and pairwise potential are the
network outputs. GenTHREADER was used successfully
for the structure prediction in two cases: case 1: ORF
MG276 from Mycoplasma genitalium was predicted to
share structure similarity with 1HGX; case 2: MG276
shares a low sequence similarity (10% sequence identity)
with 1HGX.

A back-propagation neural network can grossly approx-
imate the score function of the popular BLAST family
of genomic sequence alignment and scoring tools. The
resultant neural network may provide a processing speed
advantage over the BLAST tool, but may suffer somewhat
in comparison to the accuracy of BLAST. Further study is
necessary to determine whether a neural network with
additional hidden units or structural complexity could be
used to more closely approximate BLAST. However, closer
approximation may also limit the speed performance
advantages enjoyed by the neural network approach.

Other related investigations in sequence analysis are
available in [16, 17].

5.2 Gene finding and promoter
identification
The application of artificial neural networks for discrimi-
nating the coding system of eukaryotic genes is investigated
in [18]. Over 300 genes from eight eukaryotic organisms are
chosen: human, mouse, rat, horse, ox, sheep, soybean and
rabbit. From these genes different discrimination models
are build which are relevant to genes promoter regions,
poly(A) signals, splice site locations of introns and noose
structures. The results showed that as long as the coding
length is definite, the only correct coding region can be
chosen from the large number of possible solutions
discriminated by neural networks.

In [19] the quantitative similarity among tRNA gene
sequences was acquired by analysis with an artificial neural
network. The evolutionary relationship derived from ANN
results was consistent with those from other methods. A
new sequence was recognised to be a tRNA-like gene by a
neural network on the analysis of similarity.

The work of Lukashin et al. [20] is one of the earlier
investigations that discussed the problem of recognition of
promoter sites in the DNA sequence in a neural network
framework. The learning process involves a small (of the
order of 10%) part of the total set of promoter sequences.
During this procedure the neural network develops a system
of distinctive features (key words) to be used as a reference
in identifying promoters against the background of random

sequences. The learning quality is then tested with the whole
set. The efficiency of promoter recognition has been
reported as 94 to 99% and the probability of an arbitrary
sequence being identified as a promoter is 2 to 6%.

In [21] a multilayered feed-forward ANN architecture is
trained for predicting whether a given nucleotide sequence is
a mycobacterial promoter sequence. The ANN is used in
conjunction with the caliper randomisation (CR) approach
for determining the structurally/functionally important
regions in the promoter sequences. This work shows that
ANNs are efficient tools for predicting mycobacterial
promoter sequences and determining structurally/function-
ally important sub-regions therein.

Other related investigations in promoter identification are
available in [22, 23].

5.3 Protein analysis
The most successful techniques for prediction of the three-
dimensional structure of protein rely on aligning the
sequence of a protein of unknown structure to a homologue
of known structure. Such methods fail if there is no
homologue in the structural database, or if the technique for
searching the structural database is unable to identify
homologues that are present.

The work of Qian et al. [24] is one of the earlier
investigations that discussed the protein structure prediction
problem in a neural network framework. They used X-ray-
derived crystal structures of globular proteins available at
that time to train a NN to predict the secondary structure of
non-homologous proteins. Over 100 protein structures were
used to train this network. After training, when the NN was
queried with new data, a prediction accuracy of 64% was
obtained.

Rost et al. [25, 26] took advantage of the fact that a
multiple sequence alignment contains more information
about a protein than the primary sequence alone. Instead of
using a single sequence as input into the network, they used
a sequence profile that resulted from the multiple align-
ments. This resulted in a significant improvement in
prediction accuracy to 71.4%. Recently, more radical
changes to the design of NNs including bi-directional
training and the use of the entire protein sequence as
simultaneous input instead of a shifting window of fixed
length has led to prediction accuracy above 71%.

The prediction of protein secondary structure using
structured neural networks and multiple sequence align-
ments have been investigated by Riis and Krogh [27].
Separate networks are used for predicting the three
secondary structures, ff-helix, fi-strand and coil. The
networks are designed using a priori knowledge of amino
acid properties with respect to the secondary structure and
of the characteristic periodicity in ff-helices. This method
gives an overall prediction accuracy of 66.3% when using
seven-fold cross-validation on a database of 126 non-
homologous globular proteins. Applying the method to
multiple sequence alignments of homologous proteins
increases the prediction accuracy significantly to 71.3% [27].

In [28] a method has been developed using ANNs for the
prediction of beta-turn types I, II, IV and VIII. For each
turn type, two consecutive feed-forward back-propagation
networks with a single hidden layer have been used. The
first sequence-to-structure network has been trained on
single sequences in addition to on PSI-BLAST PSSM. The
output from the first network along with PSIPRED [29]
predicted secondary structure has been used as input for the
second-level structure-to-structure network. The networks
have been trained and tested on a non-homologous data set
of 426 proteins chains by seven-fold cross-validation. The

560 IEE Proc.-Circuits Devices Syst., Vol. 152, No. 5, October 2005

prediction performance for each turn type is improved by
using multiple sequence alignment, second level structure-
to-structure network and PSIPRED predicted secondary
structure information.

The back-propagation neural network algorithm is a
commonly used method for predicting the secondary
structure of proteins. Wood et al. [30] compared the
cascade-correlation ANN architecture [31] with the back-
propagation ANN using a constructive algorithm and
found that cascade-correlation achieves predictive accura-
cies comparable to those obtained by back-propagation, in
shorter time. Ding et al. [32] used support vector machine
(SVM) and the neural network (NN) learning methods as
base classifiers for protein fold recognition, without relying
on sequence similarity.

Other related investigations in protein structure predic-
tion are available in [33–38].

5.4 Gene expression and microarray
Clustering is commonly used in microarray experiments to
identify groups of genes that share similar expression. Genes
that are similarly expressed are often co-regulated and
involved in the same cellular processes. Therefore, clustering
suggests functional relationships between groups of genes. It
may also help in identifying promoter sequence elements
that are shared among genes. In addition, clustering can be
used to analyse the effects of specific changes in experi-
mental conditions and may reveal the full cellular responses
triggered by those conditions.

Most of the analysis of the enormous amount of
information provided on microarray chips with regard to
cancer patient prognosis has relied on clustering techniques
and other standard statistical procedures. These methods
are inadequate in providing the reduced gene subsets
required for perfect classification. ANNs trained on
microarray data from DLBCL lymphoma patients have,
for the first time, been able to predict the long-term survival
of individual patients with 100% accuracy [39]. Here it is
shown that differentiating the trained network can narrow
the gene profile to less than three dozen genes for each
classification and artificial neural networks are superior
tools for digesting microarray data.

Sawa et al. [40] described a neural network-based
similarity index as a nonlinear similarity index and
compared the results with other proximity measures for
Saccharomyces cerevisiae gene expression data. Here it is
shown that the clusters obtained using Euclidean distance,
correlation coefficients, and mutual information were not
significantly different. The clusters formed with the neural
network-based index were more in agreement with those
defined by functional categories and common regulatory
motifs.

Diffuse large B-cell lymphoma (DLBCL) is the largest
category of aggressive lymphomas. Less than 50% of
patients can be cured by combination chemotherapy.
Microarray technologies have recently shown that
the response to chemotherapy reflects the molecular
heterogeneity in DLBCL. On the basis of published
microarray data, Ando et al. [41] described a fuzzy neural
network (FNN) model to analyse gene expression profiling
data for the precise and simple prediction of survival of
DLBCL patients. From data on 5857 genes, this model
identified four genes (CD10, AA807551, AA805611 and
IRF-4) that could be used to predict prognosis with 93%
accuracy. FNNs are powerful tools for extracting significant
biological markers affecting prognosis, and are applicable to
various kinds of expression profiling data for any
malignancy.

Bicciato et al. [42] described a computational procedure
for pattern identification, feature extraction, and classifica-
tion of gene expression data through the analysis of an
autoassociative neural network model. The identified
patterns and features contain critical information about
gene-phenotype relationships observed during changes in
cell physiology. The methodology has been tested on two
different microarray datasets, acute human leukemia and
the human colon adenocarcinoma.

The Bayesian neural network is used with structural
learning with forgetting for searching optimal network size
and structure of microarray data in order to capture the
structural information of gene expressions [43]. The process
of Bayesian learning starts with a feed forward neural
network (FFNN) and prior distribution for the network
parameters. The prior distribution gives initial beliefs about
the parameters before any data is observed. After new data
are observed, the prior distribution is updated to the
posterior distribution using Bayes rules. Multi-layer percep-
tron (MLP) is mainly considered as the network structure
for Bayesian learning. Since the correlated data may include
high levels of noise, efficient regularisation techniques are
required to improve the generalisation performance. This
involves network complexity adjustment and performance
function modification. To do the latter, instead of the sum
of squared error (SSE) on the training set, a cost function is
automatically adjusted.

Vohradsky [44] used artificial neural networks as models
of the dynamics of gene expression. The significance of the
regulatory effect of one gene product on the expression of
other genes of the system is defined by a weight matrix. The
model considers multigenic regulation including positive
and/or negative feedback. The process of gene expression is
described by a single network and by two linked networks
where transcription and translation are modelled indepen-
dently. Each of these processes is described by different
networks controlled by different weight matrices. Methods
for computing the parameters of the model from experi-
mental data are also shown.

Plausible neural network (PLANN) is another universal
data analysis tool based upon artificial neural networks and
is capable of plausible inference and incremental learning
[45]. This tool has been applied to research data from
molecular biological systems through the simultaneous
analysis of gene expression data and other types of
biological information.

Relevant investigations for gene expression and micro-
array are also available in [46].

5.5 Gene regulatory network
Adaptive double self-organising map (ADSOM) [47]
provides a novel clustering technique for identifying gene
regulatory networks. It has a flexible topology and it
performs clustering and cluster visualisation simultaneously,
thereby requiring no a priori knowledge about the number
of clusters. ADSOM is developed based on a recently
introduced technique known as double self-organising map
(DSOM). DSOM combines features of the popular self-
organising map (SOM) with two-dimensional position
vectors, which serve as a visualisation tool to decide how
many clusters are needed. Although DSOM addresses the
problem of identifying unknown number of clusters, its free
parameters are difficult to control to guarantee correct
results and convergence. ADSOM updates its free para-
meters during training and it allows convergence of its
position vectors to a fairly consistent number of clusters
provided that its initial number of nodes is greater than the
expected number of clusters. The number of clusters can be

IEE Proc.-Circuits Devices Syst., Vol. 152, No. 5, October 2005 561

identified by visually counting the clusters formed by the
position vectors after training. The reliance of ADSOM in
identifying the number of clusters is proven by applying it
to publicly available gene expression data from multiple
biological systems such as yeast, human, and mouse. It may
be noted that gene regulatory network analysis is a very
recent research area, and neural network applications to it
are scarce.

Appropriate definition of neural network architecture
prior to data analysis is crucial for successful data mining.
This can be challenging when the underlying model of the
data is unknown. Using simulated data, Ritchie et al. [48]
optimised back-propagation neural network architecture
using genetic programming to improve the ability of neural
networks to model, identify, characterise and detect
nonlinear gene-gene interactions in studies of common
human diseases. They showed that the genetic program-
ming optimised neural network is superior to the traditional
back-propagation neural network approach in terms of
predictive ability and power to detect gene-gene interactions
when non-functional polymorphisms are present.

6 Other bioinformatics tasks using ANNs

Dopazo et al. [49] described a new type of unsupervised
growing self-organising neural network that expands itself
following the taxonomic relationships existing among the
sequences being classified. The binary tree topology of this
neural network, opposite to other more classical neural
network topologies, permits an efficient classification of
sequences. The growing nature of this procedure allows to
stop it at the desired taxonomic level without the necessity
of waiting until a complete phylogenetic tree is produced.
The time for convergence is approximately a linear function
of the number of sequences. This neural network metho-
dology is an excellent tool for the phylogenetic analysis of a
large number of sequences.

Parbhane et al. [50] utilise an artificial neural network
(ANN) for the prediction of DNA curvature in terms of
retardation anomaly. The ANN captured the phase
information and increased helix flexibility. Base pair effects
in determining the extent of DNA curvature has been
developed. The network predictions validate the known
experimental results and also explain how the base pairs
affect the curvature. The results suggest that ANN can be
used as a model-free tool for studying DNA curvature.

Drug resistance is a very important factor influencing the
failure of current HIV therapies. The ability to predict the
drug resistance of HIV protease mutants may be useful in
developing more effective and longer lasting treatment
regimens. The HIV resistance is predicted to two current
protease inhibitors, Indinavir and Saquinavir. This problem
is handled in [51] from two perspectives. First, a predictor
was constructed based on the structural features of the HIV
protease-drug inhibitor complex. A particular structure was
represented by its list of contacts between the inhibitor and
the protease. Next, a classifier was constructed based on the
sequence data of various drug resistant mutants. In both
cases, SOMs were first used to extract the important
features and cluster the patterns in an unsupervised manner.
This was followed by subsequent labelling based on the
known patterns in the training set. The classifier using the
structure information is able to correctly recognise the
previously unseen mutants with an accuracy of between 60
and 70%. The method is superior to a random classifier.

In [52] an ANN is trained to predict the sequence of the
human TP53 tumor suppressor gene based on a p53
GeneChip. The trained neural network uses as input the

fluorescence intensities of DNA hybridised to oligonucleo-
tides on the surface of the chip. In this methodology errors
are reported between zero and four in the predicted 1300 bp
sequence when tested on wild-type TP53 sequence.

Neural network computations on DNA and RNA
sequences are used in [53] to demonstrate that data
compression is possible in these sequences. The result
implies that a certain discrimination should be achievable
between structured and random regions. The technique is
illustrated by computing the compressibility of short RNA
sequences such as tRNA.

A basic description of artificial neural networks and
applications of neural nets to problems in human gene
finding for three different types of data are discussed in [54].

7 Conclusion and scope of future research

Artificial neural networks (ANNs) are the first group of
machine learning algorithms to be used on a biological
pattern recognition problem. The rationale for applying
computational approaches to facilitate the understanding of
various biological processes are mainly:

� To provide a more global perspective in experimental
design.
� To capitalise on the emerging technology of database-
mining – the process by which testable hypotheses are
generated regarding the function or structure of a gene or
protein of interest by identifying similar sequences in better
characterised organisms.

Neural networks appear to be a very powerful artificial
intelligence (AI) paradigm to handle these issues [55]. The
most important, and attractive, feature of ANNs is their
capability of learning (generalising) from example (extract-
ing knowledge from data). This feature makes the ANN an
attractive choice for bioinformatics tasks. The combination
of backpropagation learning algorithm and the feed-
forward, layered networks have been applied to virtually
all pattern recognition problems (like sequence analysis,
protein analysis, gene finding) in bioinformatics. The reason
for this is the simplicity of the algorithm, and the vast body
of research that has studied these networks. Although these
networks are theoretically capable of separating a problem
space into appropriate classes irrespective of the complexity
of the separation boundaries, one of the classical disadvan-
tages of these networks is that a certain amount of a priori
knowledge is required in order to build a useful network. A
crucial factor in training a useful network is its size (number
of layers, size of layers, and number of synaptic connec-
tions). In many cases, it takes a large number of simulations
before a close-to-optimum size of the network is found. If
the network is designed to be larger than this optimum size,
it will memorise (also called over-fit) the data rather than
generalising and extracting knowledge. If the network is
chosen to be smaller than the optimum size, the network
will never learn the entire task at hand. However, there have
been several reports dealing with the determination of an
appropriate size of a network for a particular task.

Let us consider self-organising map (SOM), as an
example, which has been widely used in mining biological
data. SOM has the distinct advantage that they allow a
priori knowledge to be included in the clustering process
and well suited for analysing patterns (e.g., microarray
data). They are ideally suited to exploratory data analysis,
allowing one to impose partial structure on the clusters (in
contrast to the rigid structure of hierarchical clustering, the
strong prior hypotheses used in Bayesian clustering, and the

562 IEE Proc.-Circuits Devices Syst., Vol. 152, No. 5, October 2005

nonstructure of k-means clustering) facilitating easy visua-
lisation and interpretation. SOMs have good computational
properties and are easy to implement, reasonably fast, and
are scalable to large data sets. The most prominent
disadvantage of the SOM-based approach is that it is
difficult to know when to stop the algorithm and it may get
stuck to a local minima, so the map is allowed to grow
indefinitely to a point where clearly different sets of patterns
are identified.

Other soft computing tools, like fuzzy set theory and
genetic algorithms, integrated with ANN [56] may also be
used; based on the principles of case based reasoning [57].
Even though the current approaches in biocomputing are
very helpful in identifying patterns and functions of proteins
and genes, they are still far from being perfect. They are not
only time-consuming, requiring Unix workstations to run
on, but might also lead to false interpretations and
assumptions due to necessary simplifications. It is therefore
still mandatory to use biological reasoning and common
sense in evaluating the results delivered by a biocomputing
program. Also, for evaluation of the trustworthiness of the
output of a program it is necessary to understand the
mathematical/theoretical background of it to finally come
up with a useful and senseful analysis.

8 Acknowledgment

This work is partly supported by grant 22(0346)/02/EMR-II
of the Council of Scientific and Industrial Research (CSIR),
New Delhi, under the project ‘‘Knowledge Based Connec-
tionist Data Mining System: Design and Application’’.

9 References

1 Baldi, P., and Brunak, S.: ‘Bioinformatics: the machine learning
approach’ (MIT Press, Cambridge, MA, 1998)

2 Altman, R.B., Valencia, A., Miyano, S., and Ranganathan, S.:
‘Challenges for intelligent systems in biology’, IEEE Intell. Syst., 2001,
16, (6), pp. 14–20

3 Setubal, J., and Meidanis, J.: ‘Introduction to computational
molecular biology’ (International Thomson Publishing, Boston,
MA, 1999)

4 Nash, H., Blair, D., and Grefenstette, J.: ‘Comparing algorithms for
large-scale sequence analysis’. Proc. 2nd IEEE Int. Symp. on
Bioinformatics and Bioengineering (BIBE’01), 2001, pp. 89–96

5 Needleman, S.B., and Wunsch, C.D.: ‘A general method applicable to
the search for similarities in the amino acid sequence of two proteins’,
J. Mol. Biol., 1970, 48, pp. 443–453

6 Smith, T.F., and Waterman, M.S.: ‘Identification of common
molecular sequences’, J. Mol. Biol., 1981, 147, pp. 195–197

7 Gautheret, D., Major, F., and Cedergren, R.: ‘Pattern searching/
alignment with RNA primary and secondary structures: an effective
descriptor for tRNA’, Comp. Appl. Biosci., 1990, 6, pp. 325–331

8 Fickett, J.W.: ‘Finding genes by computer: the state of the art’, Trends
Genet., 1996, 12, (8), pp. 316–320

9 Salzberg, S.L., Searls, D.B., and Kasif, S.: ‘Computational methods in
molecular biology’ (Elsevier Science, Amsterdam, 1998)

10 Chou, P., and Fasmann, G.: ‘Prediction of the secondary structure of
proteins from their amino acid sequence’, Adv. Enzym., 1978, 47,
pp. 145–148

11 Luscombe, N.M., Greenbaum, D., and Gerstein, M.: ‘What is
bioinformatics? A proposed definition and overview of the field’,
Methods Informat. Med., 2001, 40, (4), pp. 346–358

12 Quackenbush, J.: ‘Computational analysis of microarray data’, Nat.
Rev. Genetics, 2001, 2, pp. 418–427

13 Allex, C.F., Shavlik, J.W., and Blattner, F.R.: ‘Neural network input
representations that produce accurate consensus sequences fromDNA
fragment assemblies’, Bioinformatics, 1999, 15, (9), pp. 723–728

14 Arakawa, M., Hasegawa, K., and Funatsu, K.: ‘Application of the
novel molecular alignment method using the Hopfield neural network
to 3D-QSAR’, J. Chem. Inf. Comput. Sci., 2003, 43, (5), pp. 1396–1402

15 Jones, D.T.: ‘GenTHREADER: an efficient and reliable protein fold
recognition method for genomic sequences’, J. Mol. Biol., 1999, 287,
pp. 797–815

16 Hirst, J.D., and Sternberg, M.J.: ‘Prediction of structural and
functional features of protein and nucleic acid sequences by artificial
neural networks’, Biochemistry, 1992, 31, (32), pp. 7211–7218

17 Petersen, S.B., Bohr, H., Bohr, J., Brunak, S., Cotterill, R.M.,
Fredholm, H., and Lautrup, B.: ‘Training neural networks to analyse
biological sequences’, Trends Biotechnol., 1990, 8, (11), pp. 304–308

18 Cai, Y., and Chen, C.: ‘Artificial neural network method for
discriminating coding regions of eukaryotic genes’, Comput. Appl.
Biosci., 1995, 11, (5), pp. 497–501

19 Sun, J., Song, W.Y., Zhu, L.H., and Chen, R.S.: ‘Analysis of tRNA
gene sequences by neural network’, J. Comput. Biol., 1995, 2, (3),
pp. 409–416

20 Lukashin, A.V., Anshelevich, V.V., Amirikyan, B.R., Gragerov, A.I.,
and Frank-Kamenetskii, M.D.: ‘Neural network models for promoter
recognition’, J. Biomol. Struct. Dyn., 1989, 6, (6), pp. 1123–1133

21 Kalate, R.N., Tambe, S.S., and Kulkarni, B.D.: ‘Artificial neural
networks for prediction of mycobacterial promoter sequences’,
Comput. Biol. Chem., 2003, 27, (6), pp. 555–564

22 Reese, M.G.: ‘Application of a time-delay neural network to promoter
annotation in the Drosophila melanogaster genome’, Comput. Chem.,
2001, 26, (1), pp. 51–56

23 Mahadevan, I., and Ghosh, I.: ‘Analysis of E. coli promoter structures
using neural networks’, Nucleic Acids Res., 1994, 22, (11), pp. 2158–
2165

24 Qian, N., and Sejnowski, T.J.: ‘Predicting the secondary structure of
globular proteins using neural network models’, J. Mol. Biol., 1988,
202, (4), pp. 865–884

25 Rost, B., and Sander, C.: ‘Improved prediction of protein secondary
structure by use of sequence profiles and neural networks’, Proc. Nat.
Acad. Sci., 1993, 90, (16), pp. 7558–7562

26 Rost, B., and Sander, C.: ‘Prediction of protein secondary structure at
better than 70% accuracy’, J. Mol. Biol., 1993, 232, pp. 584–599

27 Riis, S.K., and Krogh, A.: ‘Improving prediction of protein secondary
structure using structured neural networks and multiple sequence
alignments’, J. Comput. Biol., 1996, 3, pp. 163–183

28 Kaur, H., Raghava, G.P.: ‘A neural network method for prediction of
beta-turn types in proteins using evolutionary information’, Bioinfor-
matics, 2004, 20, (16), pp. 2751–2758

29 McGuffin, L.J., Bryson, K., and Jones, D.T.: ‘The PSIPRED protein
structure prediction server’, Bioinformatics, 2000, 16, (4), pp. 404–405

30 Wood, M.J., and Hirst, J.D.: ‘Predicting protein secondary structure
by cascade-correlation neural networks’, Bioinformatics, 2004, 20, (3),
pp. 419–420

31 Pasquier, C., Promponas, V.J., and Hamodrakas, S.J.: ‘PRED-
CLASS: cascading neural networks for generalized protein classification
and genome-wide applications’, Proteins, 2001, 44, (3), pp. 361–369

32 Ding, C.H., and Dubchak, I.: ‘Multi-class protein fold recognition
using support vector machines and neural networks’, Bioinformatics,
2001, 17, (4), pp. 349–358

33 Berry, E.A., Dalby, A.R., and Yang, Z.R.: ‘Reduced bio basis
function neural network for identification of protein phosphorylation
sites: comparison with pattern recognition algorithms’, Comput. Biol.
Chem., 2004, 28, (1), pp. 75–85

34 Shepherd, A.J., Gorse, D., and Thornton, J.M.: ‘A novel approach to
the recognition of protein architecture from sequence using Fourier
analysis and neural networks’, Proteins, 2003, 50, (2), pp. 290–302

35 Pollastri, G., Baldi, P., Fariselli, P., and Casadio, R.: ‘Improved
prediction of the number of residue contacts in proteins by recurrent
neural networks’, Bioinformatics, 2001, 17, (1), pp. 234–242

36 Lin, K., May, A.C., and Taylor, W.R.: ‘Threading using neural
nEtwork (TUNE): the measure of protein sequence-structure
compatibility’, Bioinformatics, 2002, 18, (10), pp. 1350–1357

37 Cai, Y.D., Liu, X.J., and Chou, K.C.: ‘Prediction of protein secondary
structure content by artificial neural network’, J. Comput. Chem.,
2003, 24, (6), pp. 727–731

38 Dietmann, S., and Frommel, C.: ‘Prediction of 3D neighbours of
molecular surface patches in proteins by artificial neural networks’,
Bioinformatics, 2002, 18, (1), pp. 167–174

39 O’Neill, M.C., and Song, L.: ‘Neural network analysis of lymphoma
microarray data: prognosis and diagnosis near-perfect’, BMC
Bioinformatics, 2003, 4, (1), pp. 13–20

40 Sawa, T., and Ohno-Machado, L.: ‘A neural network-based similarity
index for clustering DNAmicroarray data’, Comput. Biol. Med., 2003,
33, (1), pp. 1–15

41 Ando, T., Suguro, M., Hanai, T., Kobayashi, T., Honda, H., and
Seto, M.: ‘Fuzzy neural network applied to gene expression profiling
for predicting the prognosis of diffuse large B-cell lymphoma’, Jpn.
J. Cancer. Res., 2002, 93, (11), pp. 1207–1212

42 Bicciato, S., Pandin, M., Didone, G., and Di Bello, C.: ‘Pattern
identification and classification in gene expression data using an
autoassociative neural network model’, Biotechnol. Bioeng., 2003, 81,
(5), pp. 594–606

43 Liang, Y., Georgre, E.O., and Kelemen, A.: ‘Bayesian neural network
for microarray data’. Technical Report, Department of Mathematical
Sciences, University of Memphis, Memphis, TN 38152, USA

44 Vohradsky, J.: ‘Neural network model of gene expression’, FASEB
J., 2001, 15, (3), pp. 846–854

45 PLANN Software, ‘PNN Technologies’, Pasadena, CA, USA
46 Herrero, J., Valencia, A., and Dopazo, J.: ‘A hierarchical unsupervised

growing neural network for clustering gene expression patterns’,
Bioinformatics, 2001, 17, (2), pp. 126–136

47 Ressom, H., Wang, D., and Natarajan, P.: ‘Clustering gene expression
data using adaptive double self-organizing map’, Physiol. Genomics,
2003, 14, pp. 35–46

48 Ritchie, M.D., White, B.C., Parker, J.S., Hahn, L.W., and Moore,
J.H.: ‘Optimization of neural network architecture using genetic
programming improves detection and modeling of gene-gene interac-
tions in studies of human diseases’, BMC Bioinformatics, 2003, 4, (1),
pp. 28–36

IEE Proc.-Circuits Devices Syst., Vol. 152, No. 5, October 2005 563

49 Dopazo, J., and Carazo, J.M.: ‘Phylogenetic reconstruction using an
unsupervised growing neural network that adopts the topology of a
phylogenetic tree’, J. Mol. Evol., 1997, 44, pp. 226–233

50 Parbhane, R.V., Tambe, S.S., and Kulkarni, B.D.: ‘Analysis of DNA
curvature using artificial neural networks’, Bioinformatics, 1998, 14,
(2), pp. 131–138

51 Draghici, S., and Potter, R.B.: ‘Predicting HIV drug resistance with
neural networks’, Bioinformatics, 2003, 19, (1), pp. 98–107

52 Spicker, J.S., Wikman, F., Lu, M.L., Cordon-Cardo, C., Workman,
C., ORntoft, T.F., Brunak, S., and Knudsen, S.: ‘Neural network
predicts sequence of TP53 gene based on DNA chip’, Bioinformatics,
2002, 18, (8), pp. 1133–1134

53 Alvager, T., Graham, G., Hutchison, D., and Westgard, J.: ‘Neural
network method to analyse data compression in DNA and RNA
sequences’, J. Chem. Inf. Comput. Sci., 1997, 37, (2), pp. 335–337

54 Sherriff, A., and Ott, J.: ‘Applications of neural networks for gene
finding’, Adv. Genet., 2001, 42, pp. 287–297

55 Pal, S.K., Polkowski, L., and Skowron, A.: ‘Rough-neuro
computing: A way of computing with words’ (Springer, Berlin,
2003)

56 Pal, S.K., and Mitra, S.: ‘Neuro-fuzzy pattern recognition: methods in
soft computing paradigm’ (John Wiley, NY, 1999)

57 Pal, S.K., and Shiu, S.C.K.: ‘Foundations of soft case based reasoning’
(John Wiley, NY, 2004)

564 IEE Proc.-Circuits Devices Syst., Vol. 152, No. 5, October 2005

Appl Intell (2007) 26:183–195

DOI 10.1007/s10489-006-0018-y

Genetic operators for combinatorial optimization in TSP and
microarray gene ordering
Shubhra Sankar Ray · Sanghamitra Bandyopadhyay ·
Sankar K. Pal

Published online: 9 November 2006
C© Springer Science + Business Media, LLC 2007

Abstract This paper deals with some new operators of ge-

netic algorithms and[-27pc] demonstrates their effectiveness

to the traveling salesman problem (TSP) and microarray

gene ordering. The new operators developed are nearest

fragment operator based on the concept of nearest neigh-

bor heuristic, and a modified version of order crossover op-

erator. While these result in faster convergence of Genetic

Algorithm (GAs) in finding the optimal order of genes in mi-

croarray and cities in TSP, the nearest fragment operator can

augment the search space quickly and thus obtain much bet-

ter results compared to other heuristics. Appropriate number

of fragments for the nearest fragment operator and appropri-

ate substring length in terms of the number of cities/genes

for the modified order crossover operator are determined sys-

tematically. Gene order provided by the proposed method is

seen to be superior to other related methods based on GAs,

neural networks and clustering in terms of biological scores

computed using categorization of the genes.

Keywords Microarray . Gene analysis . Data mining .

Biocomputing . Evolutionary algorithm . Soft computing

S. S. Ray (�) . S. K. Pal
Center for Soft Computing Research: A National Facility, Indian
Statistical Institute, Kolkata 700108, India
e-mail: shubhra r@isical.ac.in

S. K. Pal
e-mail: sankar@isical.ac.in

S. Bandyopadhyay
Machine Intelligence Unit, Indian Statistical Institute, Kolkata
700108, India
e-mail: sanghami@isical.ac.in

1 Introduction

The Traveling Salesman Problem (TSP) is one of the top ten

problems, which has been addressed extensively by mathe-

maticians and computer scientists. It has been used as one of

the most important test-beds for new combinatorial optimiza-

tion methods [1]. Its importance stems from the fact there is

a plethora of fields in which it finds applications e.g., shop

floor control (scheduling), distribution of goods and services

(vehicle routing), product design (VLSI layout), microarray

gene ordering and DNA fragment assembly. Since the TSP

has proved to belong to the class of NP-hard problems [2],

heuristics and metaheuristics occupy an important place in

the methods so far developed to provide practical solutions

for large instances and any problem belonging to the NP-

class can be formulated with TSP. The classical formulation

is stated as: Given a finite set of cities and the cost of trav-

eling from city I to city j , if a traveling salesman were to

visit each city exactly once and then return to the home city,

which tour would incur the minimum cost?

Over decades, researchers have suggested a multitude of

heuristic algorithms, such as genetic algorithms (GAs) [3–6],

tabu search [7, 8], neural networks [9, 10], and ant colonies

[11] for solving TSP. Of particular interest are the GAs, due

to the effectiveness achieved by this class of techniques in

finding near optimal solutions in short computational time for

large combinatorial optimization problems. The state-of-the-

art techniques for solving TSP with GA incorporates various

local search heuristics including modified versions of Lin-

Kernighan (LK) heuristic [12–15]. It has been found that,

hybridization of local search heuristics with GA for solving

TSP leads to better performance, in general. Some impor-

tant considerations in integrating GAs and Lin-Kernighan

heuristic, selection of a proper representation strategy, cre-

ation of the initial population and designing of various genetic

Springer

184 Appl Intell (2007) 26:183–195

operators are discussed in [16]. A comprehensive discussion

regarding different representation strategies for TSP is pro-

vided in [1].

For creating the initial population, random population

based approach and nearest neighbor tour construction

heuristic (NN) approach are commonly used. Regarding the

random population based approach, consider the investiga-

tions in [5] and [6] as examples. A GA with immunity (IGA)

is developed in [5]. It is based on the theory of immunity

in biology, which mainly constructs an immune operator ac-

complished in two steps: (a) a vaccination and (b) an immune

selection. Strategies and methods of selecting vaccines and

constructing an immune operator are also mentioned in [5].

IGA can improve the searching ability and adaptability of

TSP. Two operators of GA, namely, knowledge based mul-

tiple inversion (KBMI) and knowledge based neighborhood

swapping (KBNS) are reported in [6]. KBMI helps in explor-

ing the search space efficiently and prevents the GA from

getting stuck in the local optima, whereas, KBNS, a deter-

ministic operator, helps the stochastic environment of the

working of the GA to derive an extra boost in the positive

direction. The corresponding GA for solving TSP is referred

to as SWAP GATSP [6].

Nearest neighbor (NN) tour construction heuristic is a

common choice to construct the initial population of chro-

mosome for solving TSP with GAs. Investigations in this

line include [4, 17–19]. In [4] a modified multiple-searching

genetic algorithm (MMGA) is used with two kinds of chro-

mosomes (namely, conservative and explorer). These two

chromosomes operate under different crossover and muta-

tion rates for tour improvement and to avoid the possibility

of being trapped at local optima in TSP. Since the NN heuris-

tic takes a locally greedy decision at each step, it is found

that several cities that are neglected earlier, may need to be

inserted at high costs in the end. This leads to severe mistakes

in path construction.

Crossover operators of GAs are seen to rectify the mis-

takes in path construction by NN or any other approach.

Various crossover operators such as order crossover [20],

cycle crossover [21], partially matched crossover [3], edge-

recombination crossover [22, 23], and matrix crossover [24]

have been suggested for the TSP. Order crossover has been

observed to be one of the best in terms of quality and speed,

and yet is simple to implement for solving TSP using GA [1,

3, 6]. However, the random length of substring, chosen from

the parent string for performing crossover may increase the

computational time to some extent.

The TSP, with some minor modifications, can be used to

model the microarray gene ordering (MGO) problem. In or-

der to determine functional relationships between groups of

genes that are often co-regulated and involved in the same cel-

lular process, gene ordering is necessary. Gene ordering pro-

vides a sequence of genes such that those that are functionally

related are closer to each other in the ordering [25]. This func-

tional relationship among genes is determined by microarray

gene expression levels. A microarray is typically a glass slide,

onto which thousands of genes are attached at fixed locations

(spots). By performing biological experiments gene expres-

sion levels are obtained from microarray [26]. A good solu-

tion of the gene ordering problem (i.e., finding optimal order

of large DNA microarray gene expression data) has similar

genes grouped together in clusters. Similarity between genes

can be measured in terms of Euclidean distance, Pearson cor-

relation, absolute correlation, Spearman rank correlation, etc.

Investigations for clustering gene expression profiles include

complete and average linkage (different versions of hierar-

chical clustering) [25, 27], self-organizing maps (SOM) [28]

and Genetic Algorithms [29, 30].

Tsai et al. [29] formulated the MGO problem as TSP and

applied family competition GA (FCGA) for solving it. They

associated one imaginary city to each gene, and obtain the

distance between any two cities (genes) from the matrix of

inter gene distances. For microarray gene ordering it is nec-

essary to minimize the distance between the genes that are

in the neighborhood of each other, not the distant genes.

However, Tsai et al. tried to minimize the distance between

distant genes as well [29, 30]. This problem for TSP formu-

lation in microarray gene ordering using GA is minimized in

NNGA [30], where relatively long distances between genes

are ignored for fitness evaluation. The present investigation

has three parts. First, we define a new nearest fragment oper-

ator (NF) and a modified version of order crossover operator

(viz., modified order crossover, MOC). The NF reduces the

limitation of NN heuristic in path construction. This reduc-

tion is achieved by determining optimum number of frag-

ments in terms of the number of cities and then greedily

reconnecting them. The nearest fragment operator also takes

care of the neighbor genes not the distant ones for MGO and

provides good results without ignoring any long distances

between genes for fitness evaluation. The modified version

of order crossover operator (MOC) handles the indefinite

computational time due to random length of substring and

its random insertion in order crossover. This is done by sys-

tematically determining a appropriate substring length from

the parent chromosome for performing crossover. While the

position of the substring in the parent chromosome is cho-

sen randomly, the length of the substring is predetermined in

MOC. In the second part of the investigation, the effective-

ness of the new operators for solving TSP is established. Fi-

nally, in the third part the microarray gene ordering problem

is considered. Comparison of the proposed genetic operators

is carried out with other techniques based on GAs, neural

networks and clustering in terms of a biological score.

In Section 2 we provide, in brief, a formal definition of TSP

and relevance of TSP in microarray gene ordering. The dif-

ferent components of GAs along with their implementation

Springer

Appl Intell (2007) 26:183–195 185

for solving TSP are discussed in Section 3. New operators

such as NF and MOC, and the algorithm based on them for

TSP and gene ordering are described in Section 4. Then we

present in Section 5 the results obtained with our algorithm

for different TSP instances. Section 6 concludes the investi-

gation.

2 TSP definition and relevance in microarray gene
ordering

Let {1, 2, . . . , n} be the labels of the n cities and C = [ci,j] be

an n × n cost matrix where ci,j denotes the cost of traveling

from city i to city j . The Traveling Salesman Problem (TSP)

is the problem of finding the shortest closed route among n
cities, having as input the complete distance matrix among

all cities. The total cost A of a TSP tour is given by

A(n) =
n−1∑
i=1

Ci,i+1 + Cn,1 (1)

The objective is to find a permutation of the n cities, which

has minimum cost.

An optimal gene order, a minimum sum of distances be-

tween pairs of adjacent genes in a linear ordering 1, 2, . . . , n,

can be formulated as [25]

F(n) =
n−1∑
i=1

Ci,i+1, (2)

where n is the number of genes and Ci,i+1 is the distance

between two genes i and i + 1. In this study, the Euclidean

distance is used to specify the distance Ci,i+1.

Let X = x1, x2, . . . , xk and Y = y1, y2, . . . , yk be the ex-

pression levels of the two genes in terms of log-transformed

microarray gene expression data obtained over a series of k
experiments. The Euclidean distance between X and Y is

Cx,y =
√

{x1 − y1}2 + {x2 − y2}2 + · · · + {xk − yk}2. (3)

One can thus construct a matrix of inter-gene distances,

which serves as a knowledge-base for mining gene order us-

ing GA. Using this matrix one can calculate the total distance

between adjacent genes and find that permutation of genes

for which the total distance is minimized. This is analogous

to the traveling salesman problem. One can simply associate

one imaginary city to each gene, and obtain the distance be-

tween any two cities (genes) from the matrix of inter gene

distances. The formula (Eq. (2)) for optimal gene ordering

is the same as used in TSP, except the distance from the last

gene to first gene, which is omitted, as the tour is not a circular

one.

begin

while generation_count < dok

/* k = max. number of generations. */

begin

Increment generation_count

end
Output the best individual found

end

GA

Create initial population

Selection and Elitism

Produce children by crossover from

Mutate the individuals

GA

 -selected parents

Fig. 1 The Pseudo-code of Genetic Algorithm (GA)

3 Genetic algorithms for solving TSP and MGO

Genetic algorithms (GAs) [3] are randomized search and op-

timization techniques guided by the principles of evolution

and natural genetics, and have a large amount of implicit par-

allelism. GAs perform multimodal search in complex land-

scapes and provide near optimal solutions for objective or

fitness function of an optimization problem. In GAs, the

parameters of the search space are encoded in the form of

strings (chromosomes). A collection of such strings is called

a population. Initially a random population is created, which

represents different points in the search space. Based on the

principle of survival of the fittest, a few among them are se-

lected and each is assigned a number of copies that go into

the mating pool. Biologically inspired operators like mat-

ing, crossover, and mutation are applied on these strings to

yield a new generation of strings. The process of selection,

crossover and mutation continues for a fixed number of gen-

erations or until a termination condition is satisfied. A general

description of Genetic Algorithm is presented in this section

for solving TSP using elitist model. Roughly, a genetic algo-

rithm works as follows (see Fig. 1):

3.1 Chromosome representation and nearest-neighbor

heuristic

Various representation methods are used to solve the TSP

problem using GA. Some of these are binary representa-

tion, path representation, matrix representation, adjacency

representation, ordinal representation [1]. In order to find the

shortest tour for a given set of n cities using GAs, the path

representation is more natural for TSP [1]. We have used this

representation in our proposed GA. In path representation,

the chromosome (or, string) corresponding to a TSP tour is

an array of n integers which is a permutation of (1, 2, . . . , n),

where an entry i in position j indicates that city i is visited

in the j th time instant. The objective is to find a string with

minimum cost.

Springer

186 Appl Intell (2007) 26:183–195

For solving TSP, the nearest neighbor tour construction

heuristic is a common choice to construct the initial popula-

tion. The salesman starts at some random city and then visits

the city nearest to the starting city. From there he visits the

nearest city that was not visited so far, until all the cities are

visited, and the salesman returns to the starting city. The NN

tours have the advantage that they only contain a few severe

mistakes, while there are long segments connecting nodes

with short edges. Therefore such tours can serve as good

starting tours for subsequent refinement using other sophis-

ticated search methods. In NN the main disadvantage is that,

several cities are not considered during the course of the al-

gorithm and have to be inserted at high costs in the end. This

leads to severe mistakes in path construction. To overcome

the disadvantages of the NN heuristics, we propose a new

heuristic operator, called the Nearest Fragment (NF) opera-

tor (discussed in Section 4). However, unlike NN heuristic

that is used only for constructing the initial population, NF

is used in every generation (iteration) of GA with a prede-

fined probability for every chromosome in the population as

a subsequent tour improvement method.

3.2 Selection and elitism

A number of different selection implementations have been

proposed in the literature [3], such as roulette wheel selection,

tournament selection, linear normalization selection. Here

linear normalization selection, which has a high selection

pressure [3], has been implemented. In linear normalization

selection, an individual is ranked according to its fitness, and

then it is allowed to generate a number of offspring propor-

tional to its rank position. Using the rank position rather than

the actual fitness values avoids problems that occur when

fitness values are very close to each other (in which case no

individual would be favored) or when an extremely fit indi-

vidual is present in the population (in such a case it would

generate most of the offspring in the next generation). This

selection technique pushes the population toward the solu-

tion in a reasonably fast manner, avoiding the risk of a single

individual dominating the population in the space of one or

two generations.

A new population is created at each generation (itera-

tion) and after selection procedure, chromosome with high-

est fitness (least cost) from the previous generation replaces

randomly a chromosome from this new generation provided

fitness of the fittest chromosome in the previous generation

is higher than the best fitness in this current generation in the

elitist model.

3.3 Crossover

As the TSP is a permutation problem, it is natural to en-

code a tour by enumerating the city indices in order. This

approach has been dominant in GAs for solving the TSP.

In such an encoding, the chromosomal location of a city is

not fixed, and only the sequence is meaningful. Some rep-

resentative crossovers performed on order-based encodings

include cycle crossover [21], partially matched crossover [3]

and order crossover [3, 20]. Order crossover has been found

to be one of the best in terms of quality and speed [1], and yet

is simple to implement. Below order crossover is described

briefly.

Order crossover (OC). The order crossover operator [3, 20]

selects at random a substring in one of the parent tours, and

the order of the cities in the selected positions of this parent

is imposed on the other parent to produce one child. The

other child is generated in an analogous manner for the other

parent. As an example consider two parents A and B, and a

substring in A of length 3, selected randomly, as shown [3].

A = 1 2 3 |5 6 7| 4 8 9 0

and

B = 8 7 1 |2 3 0| 9 5 4 6

The cities in the selected substring in A (here, 5, 6, and 7)

are first replaced by ∗ in the receptor B.

A = 1 2 3 |5 6 7| 4 8 9 0

and

B = 8 ∗ 1 |2 3 0| 9 ∗ 4 ∗

Now to preserve the relative order in the receiver, a sliding

motion is made to leave the holes in the matching section

marked in the receiver. The convention followed in [3] is to

start this sliding motion in the second crossover site, so after

the rearrangement we have

A = 1 2 3 |5 6 7| 4 8 9 0

and

B = 2 3 0 | ∗ ∗ ∗ | 9 4 8 1

After that, the stars are replaced with the city names taken

from the donor A resulting in the offspring B1

B1 = 2 3 0 |5 6 7| 9 4 8 1

Similarly the complementary crossover from B to A yields

A1 = 5 6 7 |2 3 0| 4 8 9 1

Springer

Appl Intell (2007) 26:183–195 187

In order crossover (OC) the length of the substring for

crossover (chosen from the parent string) is random and may

often be significantly large; this can have an adverse im-

pact on the computational time. This uncertainity is tackled

with a small and predefined length of substring, obtained af-

ter extensive empirical studies, for crossover (discussed in

Section 3).

3.4 Mutation

For TSP, the simple inversion mutation (SIM) is one of

the leading performers [1]. Here simple inversion mutation

(SIM) is performed on each string probabilistically as fol-

lows: Select randomly two cut points in the string, and re-

verse the substring between these two cut points. For example

consider the tour

(1 2 |3 4 5| 6 7 8)

and suppose that the first cut point is chosen randomly be-

tween 2nd city and 3rd city, and the second cut point between

the 5th city and the 6th city as shown. Then the resulting string

will be

C = (1 2 |5 4 3| 6 7 8)

4 New operators of GA

In this section, some new operators of GAs for solving TSP

and microarray gene ordering are described. These are near-

est fragment (NF) and modified order crossover (MOC). The

genetic algorithm designed using these operators is referred

to as FRAG GA. The structure of the proposed FRAG GA

is provided in Fig. 2.

begin FRAG_GA

Create initial population with Nearest-Neighbor Heuristic

while generation_count < dok

/* k = max. number of generations. */

begin

Apply NF heuristic or (NF and LK) heuristic

Increment generation_count

end

Output the best individual found

end FRAG_GA

Elitism

Linear Normalized Selection

MOC

Mutation

Fig. 2 The Pseudo-code for FRAG GA

The basic steps of the FRAG GA are as follows:

Step 1. Create the string representation (chromosome of GA)

for a TSP tour (an array of n integers), which is a per-

mutation of 1, 2, . . . , n with Nearest-Neighbor heuristic.

Repeat this step to form the population of GA.

Step 2. The NF heuristic is applied on each chromosome

probabilistically.

Step 3. Each chromosome is upgraded to local optimal solu-

tion using chained LK heuristic probabilistically. (If Step

3. is used in the GA we denote it as FRAG GALK and

otherwise as FRAG GA.).

Step 4. Fitness of the entire population is evaluated and

elitism is used, so that the fittest string among the child

population and the parent population is passed into the

child population.

Step 5. Using the evaluated fitness of entire population, linear

normalized selection procedure is used.

Step 6. Chromosomes are now distributed randomly. Mod-

ified Order Crossover operator is applied between two

consecutive chromosomes probabilistically.

Step 7. Simple inversion mutation (SIM) is performed on

each string probabilistically.

Step 8. Generation count of GA is incremented and if it is less

than the maximum number of generations (predefined)

then from Step 2 to Step 6 are repeated.

Local search heuristics, such as 2-swap, 2-opt [19], 3-

opt [19], and Lin-Kernighan (LK) heuristic [12–14, 16],

have been extensively applied in GAs for solving TSPs.

These techniques exchange some edges of parents to gen-

erate new children. Usually, stronger local search methods

correspond to better performing GAs. The mechanisms by

which these methods add and preserve edges vary. 2-swap

arbitrarily changes two cities at a time, removing four edges

at random and adding four edges at random. 2-opt, 3-opt and

LK exchange edges if the generated solution is better than the

original one. In each iteration, 2-opt and 3-opt exchange two

and three edges respectively, while, LK exchanges a variable

number of edges. In the present investigation Concorde ver-

sion of chained-LK [31] is used for fair comparison with [16].

In the following sections, the new operators NF and MOC

are described in details.

4.1 Nearest fragment heuristic (NF)

In this process, each string (chromosome in GA) is randomly

sliced in frag fragments. The value of frag is determined by

FRAG GA in terms of the total no. of cities/genes (n) for a

particular TSP instance (or microarray data). The systematic

process of determining frag is described later in this sec-

tion. As an example, let us consider a string P that is sliced

into three random fragments (1–8), (9–14) and (15–20) for a

Springer

188 Appl Intell (2007) 26:183–195

20-city problem.

P = 1 2 3 4 5 6 7 8 |9 10 11 12 13 14| 15 16 17 18 19 20

For tour construction the first fragment (9–14) is chosen

randomly. From the last city of that fragment (14) the nearest

city that is either a start or an end point of a not yet visited

tour fragment is determined from the cost matrix. In this

example, let the nearest city (among 1, 8, 15 and 20) be 20.

The fragment containing the nearest city is connected to the

selected fragment, with or without inversion depending on

whether the nearest city is the last city of a fragment or not

respectively. In this example , the fragment 15–20 is inverted

and connected to fragment 9–14, resulting in the following

partial tour P1.

P1 = 9 10 11 12 13 14 |20 19 18 17 16 15

The process is repeated until all fragments have been re-

connected. From the last city (15) of P1 the nearest city from

unvisited fragment (1–8) is say 1. From this result the final

string P2, shown below, is formed.

P2 = 9 10 11 12 13 14 20 19 18 17 16 15 1 2 3 4 5 6 7 8

The basic steps of choosing frag value systematically for a

TSP instance with n cities are:

Step (1) Set frag value to fragmin.

Step (2) Run FRAG GA with the selected frag value for x
generations and store the number of times the best tour

cost is decreased from one generation to the next for that

frag value. Denote the stored values by Decrcost.

Step (3) Increase frag by amount �frag.

Step (3) Repeat Step 2 to 3 until frag <= fragmax

Step (4) Find θ consecutive frag values for which the sum-

mation of corresponding Decrcost values is maximum.

Step (5) The best frag value is set to the average of the

selected five consecutive frag values.

Step (6) Repeat Step 1 to 5 ten times and the average of the

best frag values is fixed as the final frag value for NF for

a particular TSP instance.

In this study we have used fragmin = n
50

, fragmax = n
2
,

x = n
10

, �frag = n
50

, and θ = 5, though experiments were

conducted for a few other values as well with similar re-

sults. The value of fragmax is not set to n as this will lead to

NN heuristic. Also, the crossover operator was disabled. The

motivation for setting the initial frag value to a low one (and

consequently fragment lengths are larger) and then increas-

ing it is that, first exploring the distant neighbors reduces the

chances of locking at a local optimal tour for the GA. The

probabilistic use of NF also helps to come out from local op-

timal solution by leaving some chromosomes for mutation

and crossover operators to explore.

As an example, consider a 100 city problem with frag =
n
16

, and consequently the fragment length is 16 on an aver-

age. As the initial population of the FRAG GA is formed

with NN heuristic there is a likelihood that a city at one end

of a fragment is close to the 16th neighbor of the similar end

of the next/previous fragment and consequently, they may be

connected by the NF heuristic. In the later generations of the

GA, using n
16

fragments in NN heuristic, explores on an aver-

age, from any city to the 16th city in the chromosome rather

than the 16th neighbor. Due to random slicing of the chro-

mosome, some fragment lengths will be obviously greater

than 16 and some less than 16, and consequently different

types of neighbors will be considered. The lowest frag value

is set to n
16

from the studies in [14], where it is mentioned

that good/optimal results are obtained for most of the TSP

instances in the TSP library [32] with a search space near

about 16 neighbors. The more distant neighbors are mostly

explored with mutation and crossover operators.

4.2 Modified order crossover (MOC)

As already mentioned, in order crossover the length of a sub-

string is chosen randomly and can lead to an increase in the

computational time, this uncertainty can be minimized if the

length of the substring for performing crossover can be fixed

to a small value. However, no study has been reported in the

literature for determining an appropriate value of the length of

a substring for performing order crossover. Such an attempt

is made in this article for finding a small substring length

for MOC that provides good results for TSP/microarray data

with the lowest computational cost.

Unlike order crossover, where the substring length is ran-

domly chosen, in MOC substring length is determined auto-

matically by the FRAG GA in a similar way of choosing frag

value in Section 4.1. In the process of choosing appropriate

substring length, NF heuristic is also present in FRAG GA

with its final frag value. As final frag value for NF is deter-

mined without any crossover operator, it is preferable to start

the process of choosing substring length for MOC initially

with a very small value like n
32

(very close to no MOC) and

then increasing it. For example, for a 10 city problem let the

systematically chosen substring length by FRAG GA is 2.

Now for the parents A and B the chromosomes may be as

follows

A = 0 9 8 4 |5 6| 7 3 2 1

and

B = 9 5 4 1 |2 3| 0 6 8 7

Springer

Appl Intell (2007) 26:183–195 189

The cities in the selected substring in A (here, 5 and 6) are

first replaced by ∗ in the receptor B.

B = 9 ∗ 4 1 |2 3| 0 ∗ 8 7

Now to preserve the relative order in the receiver, the con-

vention followed in [3] is to gather the holes in the second

crossover site and insert the substring there. But this conven-

tion leads to loss of information and increases randomness

in the receiver because, after insertion of substring 56 in B
neither 5 is nearer to 3, nor 6 is nearer to 0. To reduce this

randomness, in MOC the holes are gathered in the position

of the last deleted city (here city 6) of the receiver B.

B = 9 4 1 2 3 0 | ∗ ∗| 8 7

So after substring insertion, B is as follows:

B = 9 4 1 2 3 0 5 6 8 7

Now, at least one edge of the substring is nearer to the next

city (city 6 is nearer to 8 according to chromosome B, and

this information is preserved). Same convention is followed

for inserting substring in chromosome A.

5 Experimental results

FRAG GA is implemented in C on Pentium-4 (1.2 GHz)

and the results are compared with those obtained using

SWAP GATSP [6], MMGA [4], IGA [5], OX SIM, (standard

GA with order crossover and simple inversion mutation) [1]

MOC SIM (Modified order crossover and SIM), and self or-

ganizing map (SOM) [10] for solving TSP. For fair compari-

son with the above mentioned methods Lin-Kernighan (LK)

heuristic is not used with FRAG GA, whereas, for compar-

ison with HeSEA [16] and other LK based methods each

chromosome in FRAG GALK is updated probabilistically

with 20 runs of consecutive chained LK and mutation (as rec-

ommended in [16]). Several benchmark TSP instances, for

which the comparative study with various recently developed

pure genetic algorithms (without LK), and SOM are available

in the literature, are taken from the TSPLIB [32] without any

bias on data sets. These include Grtschels24.tsp, bayg29.tsp,

Grtschels48.tsp, eil51.tsp, St70.tsp, eil76.tsp, kroA100.tsp,

d198.tsp, ts225.tsp, pcb442.tsp and rat783.tsp. For compar-

ative study between HeSEA, FRAG GALK, and other LK

based methods the available TSP instances are lin318, rat783,

pr1002, vm1084, pcb1173, u1432, u2152, pr2392, pcb3038,

fnl4461, and usa13509. For biological microarray gene or-

dering, Cell Cycle cdc15, Cell Cycle and Yeast Complexes

datasets are chosen [33]. The three data sets consists of about

782, 803 and 979 genes respectively, which are cell cycle

Table 1 Different parameters of FRAG GA, SWAP GATSP, OX SIM,
and MOC SIM

Population NF Probability Crossover Mutation

size for FRAG GA probability probability

100 0.3 0.6 0.02

regulated in Saccharomyces cerevisiae, with different num-

ber of experiments (24, 59 and 79 respectively) [26]. Each

dataset is classified into five groups termed G1, S, S/G2,

G2/M, and M/G1 by Spellman et al. [26]. Results are com-

pared with those obtained using GAs [29, 30], different ver-

sions of hierarchical clustering [25, 27] and self-organizing

map (SOM) [28] for solving microarray gene ordering.

Throughout the experiments for FRAG GA, SWAP GATSP,

OX SIM, and MOC SIM the population size is set equal to

100. Crossover probability is fixed at 0.6 and mutation prob-

ability is fixed at 0.02 across the generations. For FRAG GA

and FRAG GALK the probability of applying NF heuristic

is fixed at 0.3. Using these parameters FRAG GA first sys-

tematically determines and stores the appropriate frag value

for NF heuristic and substring length for MOC for each prob-

lem instance in a way mentioned in Sections 4.1 and 4.2, and

then with these values, tour cost is optimized. Table 1 shows

the various parameters of different genetic algorithms used

in this current investigation.

First, we provide results comparing our method

(FRAG GA) with other methods that do not use LK heuristics

and then comparisons of results are provided with our method

incorporating LK heuristic (FRAG GALK) with other LK

based methods .

5.1 Comparison with other GA approaches for TSP

Table 2 summarizes the results obtained over 30 runs by

running the FRAG GA, SWAP GATSP [6], OX SIM and

MOC SIM [1] on the aforesaid eleven different TSP in-

stances. For SWAP GATSP, OX SIM and MOC SIM, the

overlapping parameters (Table 1) are taken from FRAG GA.

For each problem the total number of cities and the opti-

mal tour cost are mentioned below the problem name in the

first column. The total number of generations in which the

best result and the average result are obtained is mentioned

in columns 3–6 within parentheses. The error percentages

are shown in third row for each problem, where the error

percentage is defined as

E = average − optimal

optimal
× 100. (4)

Experimental results (Tables 2 and 3) using FRAG GA

are found to be superior in terms of quality of solution (best

result, average result and error percentage) with less number

Springer

190 Appl Intell (2007) 26:183–195

Table 2 Comparison of the
results over 30 runs obtained
using FRAG GA,
SWAP GATSP, OX SIM, and
MOC SIM for different TSP
instances

Problem FRAG GA SWAP GATSP OX SIM MOC SIM

Grtschels24 best 1272 (13) 1272 (50) 1272 (800) 1272 (600)

24 average 1272 (100) 1272 (200) 1322 (1500) 1272 (1500)

1272 error (%) 0.0000 0.0000 3.9308 0.0000

Bayg29 best 1610 (30) 1610 (60) 1620 (1000) 1610 (700)

29 average 1610 (100) 1615 (200) 1690 (1500) 1622 (1500)

1610 error (%) 0.0000 0.3106 4.9689 0.7453

Grtschels48 best 5046 (40) 5046 (200) 5097 (2500) 5057 (1700)

48 average 5054 (150) 5110 (700) 5410 (3000) 5184 (3000)

5046 error (%) 0.1585 1.2683 7.2136 2.7348

eil51 best 426 (45) 439 (220) 493 (2500) 444 (1600)

51 average 432 (150) 442 (700) 540 (3000) 453 (3000)

426 error (%) 1.4085 3.7559 26.7606 6.3380

St70 best 675 (40) 685 (600) 823 (4500) 698 (4500)

70 average 679 (150) 701 (1000) 920 (7500) 748 (7500)

675 error (%) 0.5926 3.8519 36.2963 10.8148

eil76 best 538 (75) 548 (700) 597 (5000) 562 (3800)

76 average 544 (150) 555 (1000) 620 (7500) 580 (7500)

538 error (%) 1.1152 3.1599 15.2416 7.8067

KroA100 best 21282 (80) 21397 (2000) 21746 (10000) 21514 (8200)

100 average 21303 (500) 21740 (3000) 22120 (12000) 21825 (12000)

21282 error (%) 0.0987 2.1521 3.9376 2.5515

d198 best 15780 (850) 15980 (4000) 16542 (10000) 16122 (9000)

198 average 15865 (2000) 16106 (4000) 17987 (16000) 16348 (16000)

15780 error (%) 0.5387 2.0659 13.9861 3.5995

ts225 best 126643 (1000) 127012 (4000) 135265 (10000) 128994 (10000)

225 average 126778 (2000) 128467 (4000) 138192 (16000) 130994 (16000)

126643 error (%) 0.1066 1.4403 9.1193 3.4356

pcb442 best 50778 (1900) 52160 (8000) 53320 (16000) 52852 (13000)

442 average 50950 (4000) 53800 (8000) 56330 (26000) 54173 (26000)

50778 error (%) 0.3387 5.9514 10.9339 6.6860

rat783 best 8850 (7500) 9732 (12000) 10810 (28000) 10155 (20000)

783 average 9030 (16000) 10087 (16000) 11136 (40000) 10528 (40000)

8806 error (%) 2.5437 14.5469 26.4592 19.5548

of generations when compared with those of other existing

GAs [1, 4–6]. It is evident from the table that for different

TSP instances the error percentages are lowest for FRAG GA

and the error percentages for MOC SIM is much less than

OX SIM . The average of error percentages over all the TSP

instances for MOC SIM is 5.8425, which is also less than

14.4407 of OX SIM. The error averages clearly indicates

that the modification of order crossover improves its perfor-

mance significantly over the existing order crossover which

uses random substring length and its random insertion. The

average of error percentages over all the TSP instances for

FRAG GA and SWAP GATSP are 0.6274 and 3.5003 re-

spectively.

Figure 3 shows a comparison of FRAG GA,

SWAP GATSP and OX SIM when the fitness value of

the fittest string is plotted with iteration. The three pro-

grams were run for 12000 iterations for kroa100.tsp with

population 100. At any iteration, the FRAG GA has the

Table 3 Average results for various GAs

Problem Optimal IGA MMGA SOM FRAG GA

eil51 426 499 446 432 432

st70 675 – – 683 679

eil76 538 611 568 556 544

Kroa100 21282 24921 22154 – 21303

d198 15780 17925 16360 – 15865

ts225 126643 135467 129453 – 126778

pcb442 50778 59380 55660 55133 50950

lowest tour cost. It took 15.36 seconds, 19.94 seconds and

15.14 seconds by FRAG GA, SWAP GATSP and OX SIM

respectively for executing 12000 iterations. Moreover, only

FRAG GA is seen to converge at around 250 iterations at

the optimal cost value of 21282 km. On the other hand, the

cost is 21397 km for SWAP GATSP after 3100 iterations

and 21990 km for OX SIM even after 12000 iterations.

Springer

Appl Intell (2007) 26:183–195 191

0 2000 4000 6000 8000 10000 12000
2.1

2.15

2.2

2.25

2.3

2.35

2.4

2.45

2.5

2.55
x 10

4

GA with OX_SIM (15.14 sec.)

SWAP_GATSP (19.94 sec.)

FRAG_GATSP (15.36 sec.)

Fig. 3 Cost of fittest string Vs. Iteration for kroa100.tsp

Note that FRAG GA takes almost the same time as

OX SIM using one more operator (NF), but provides bet-

ter result in less number of paths. It is further to be pointed

out that the NF operator creates an overhead, leading to an

increase in the computation time for FRAG GA, as com-

pared to OX SIM. However, this is compensated by the

gain obtained in using the proposed MOC operator. As a

consequence, the time required to execute one iteration, on

an average, becomes almost equal for both FRAG GA and

OX SIM. Similar observations are also made when the pro-

posed method is compared with other GAs [1, 6] and other

methods like Self Organizing Map (SOM) [10].

In Table 3 average results of FRAG GA are compared to

other GA based approaches viz., IGA and MMGA (whose

results are taken from [4]) and Self Organizing Map (SOM)

[10]. As can be seen from the table, the proposed approach

is again found to consistently outperform IGA, MMGA, and

SOM.

5.2 Comparison with other LK based approaches for TSP

Table 4 summarizes the results obtained over 20 runs by

running the FRAG GALK on different TSP instances men-

tioned in first column. 20 runs of LK [31] and mutation are

applied on randomly chosen 50 chromosomes (among those

who are not operated with NF heusristic) in each generation

of FRAG GALK. For HeSEA (with LK) [16], LKH (Multi-

trial LK) [13], iterated LK (ILK) [19], and tabu search with

LK [8] the results are taken from [16]. While FRAG GALK,

HeSEA, LKH, and concorde chained LK (concorde) [31] are

executed on Pentium-4 (1.2 GHz) personal computer, ILK

and tabu search with LK are executed on Silicon Graphics

196 MHz MIPS R1000 and Pentium III 800 MHz respec-

tively in [16]. For fair comparison Concorde chained LK is

executed separately for same time as FRAG GALK, but on

average concorde converged to the mentioned solutions (in

terms of error) before the allocated time. The total number of

cities and the optimal tour cost are mentioned below the prob-

lem name in the first column. The error percentages (Equation

4) are shown in first row for each problem. The average num-

ber of generations over 20 runs for which the error percent-

ages are obtained is mentioned in second row for each TSP

instance. The third row for each TSP instance shows the av-

erage time in seconds taken by each method. From the table it

is clear that FRAG GALK produces comparable results with

HeSEA with same version of LK in less computational time,

whereas the quality of solution of FRAG GALK is better

than other algorithms with comparable computational time.

So FRAG GALK seems to be a better TSP solver among the

existing ones. The time gain obtained by FRAG GALK over

HeSEA is due to probabilistic single run of computation-

ally effective NF heuristic and MOC over each chromosome

in FRAG GALK, whereas, HeSEA uses 20 runs of edge-

assembly crossover between the selected chromosomes and

for all possible combinations of chromosomes with proba-

bility 1. Generations of LKH, ILK, and tabu with LK are not

available.

5.3 Results for microarray gene ordering

FRAG GA is applied for ordering the genes based on their

expression levels obtained from microarray datasets. Perfor-

mance of FRAG GA for gene ordering is compared with

other methods based on GAs, clustering and neural net-

works. GA based investigations include NNGA [30] and

FCGA [29] (discussed in Section 1). Clustering methods can

be broadly divided into hierarchical and nonhierarchical clus-

tering approaches. Hierarchical clustering approaches [25,

27] group gene expressions into trees of clusters. They start

with singleton sets and keep on merging the closest sets

until all the genes form a single cluster. Complete-linkage

and average-linkage belong to this category of clustering

technique, differing only in the way the distance between

clusters is defined. Nonhierarchical clustering approaches

separate genes into groups according to the degree of sim-

ilarity (as quantified by Euclidian distances, Pearson cor-

relation) among genes. The relationships among the genes

in a particular cluster generated by nonhierarchical cluster-

ing methods are lost. Self-organizing map (SOM) [28], a

particular class of neural network, performs nonhierarchical

clustering.

Table 5 summarizes the results in terms of the sum of gene

expression distances (Eq. (2)), by executing the FRAG GA,

complete linkage, average linkage and SOM on the three

different microarray datasets (results in terms of sum of gene

expression distance and code for NNGA and FCGA are not

available in the literature [29, 30]). For FRAG GA and SOM,

best and average results obtained over 30 runs are provided,

Springer

192 Appl Intell (2007) 26:183–195

Table 4 Average results for
various LK based algorithms Problem FRAG GALK HeSEA+LK LKH Concorde ILK Tabu+LK

lin318 error (%) 0.0000 0.0000 0.1085 0.0000 – –

318 generation 2.8 3.2 – – – –

42029 time (sec.) 1.4 2.3 1.4 1.4 – –

rat783 error (%) 0.0000 0.0000 0.0000 0.1761 – –

783 generation 8.0 8.4 – – – –

8806 time (sec.) 5.9 39.1 2.2 5.9 – –

pr1002 error (%) 0.0000 0.0000 0.0000 0.0215 0.1482 0.8794

1002 generation 22.2 12.0 – – – –

259045 time (sec.) 34.6 91.0 7.5 34.6 298.0 1211.4

vm1084 error (%) 0.0000 0.0000 0.0068 0.0172 0.0217 0.3932

1084 generation 23.6 10.2 – – – –

239297 time (sec.) 34.2 80.6 12.6 34.2 377.0 597.0

pcb1173 error (%) 0.0000 0.0000 0.0009 0.0070 0.0088 0.6996

1173 generation 22.5 11.5 – – – –

56892 time (sec.) 38.7 84.5 11.8 39.0 159.0 840.0

u1432 error (%) 0.0000 0.0000 0.0000 0.0153 0.0994 0.4949

1432 generation 22.0 11.0 – – – –

152970 time (sec.) 37.7 107.0 6.9 38.0 224.0 775.0

u2152 error (%) 0.0000 0.0000 0.0495 0.0242 0.1743 0.7517

2152 generation 31.5 17.5 – – – –

64253 time (sec.) 48.3 211.0 135.0 49.0 563.0 1624.0

pr2392 error (%) 0.0000 0.0000 0.0000 0.0294 0.1495 0.6492

2392 generation 25.0 14.5 – – – –

378032 time (sec.) 46.6 208.0 26.2 47.0 452.0 1373.0

pcb3038 error (%) 0.0000 0.0000 0.0068 0.1123 0.1213 0.8708

3038 generation 120.6 29.7 – – – –

137694 time (sec.) 245.0 612.0 226.0 219.0 572.0 1149.0

fnl4461 error (%) 0.0014 0.0005 0.0027 0.0734 0.1358 0.9898

4461 generation 265.0 67.8 – – – –

182566 time (sec.) 519.0 2349.0 528.0 519.0 889.0 1018.0

usa13509 error (%) 0.0061 0.0074 0.0065 0.1201 0.1638 0.8897

13509 generation 1102.5 223.0 – – – –

19982859 time (sec.) 19203.0 34984.0 19573.0 19203.0 10694.0 5852.0

Table 5 Comparison of the
results over 30 runs in terms of
sum of gene expression
distances for microarray data
using various algorithms

Cell cycle cdc15 Cell cycle Yeast complexes

Algorithms Best Average Best Average Best Average

FRAG GA 1272 1278 2349 2362 3382 3396

(1690) (4000) (2320) (4000) (3890) (6000)

Complete-linkage 1419 1419 2534 2534 3634 3634

Average-linkage 1433 1433 2559 2559 3681 3681

SOM 1874 1905 3018 3094 4376 4449

(100000) (100000) (100000) (100000) (200000) (200000)

whereas, for complete and average linkage results remain

same for all runs. The genetic parameters for FRAG GA are

the same as used before (see Table 1). For FRAG GA and

SOM the total number of generations/iterations, for which

the best and average results are obtained are mentioned in

columns 2–7 within parentheses. From the table it is clear

that FRAG GA produces superior gene ordering than related

methods in terms of sum of the gene expression distances.

A biological score, that is different from the fitness func-

tion, is used to evaluate the final gene ordering. The biological

Springer

Appl Intell (2007) 26:183–195 193

Table 6 Comparison of the best results over 30 runs in
terms of S(N) values for microarray data

Cell cycle Cell Yeast

Algorithms cdc15 cycle complexes

FRAG GA 540 635 384

NNGA 539 634 384

FCGA 521 627 –

Complete-linkage 498 598 340

Average-linkage 500 581 331

SOM 461 578 306

score is defined as [29]

S(n) =
n−1∑
i=1

si,,i+1

where

si,,i+1 = 1, if gene i and i + 1are in the same group

= 0, if gene i and i + 1 are not in the same group

Using this, a gene ordering would have a higher score

when more genes within the same group are aligned next

to each other. So higher values of S(n) indicate better

gene ordering. For example consider the genes YML120C,

YJR048W, YMR002W and YDR432W belonging to groups

G2/M, S/G2, S/G2 and G2/M respectively. In the above-

mentioned ordering they will return a biological score of

0 + 1 + 0 = 1, whereas if they are ordered like YJR048W,

YMR002W, YDR432W and YML120C then the score will

be 1 + 0 + 1 = 2. The scoring function is therefore seen to

reflect well the order of genes in biological sense. Note that,

although S(n) provides a good quantitative index for gene or-

dering, using it as the fitness function in GA based ordering

is not practical, since the information about gene categories

is unknown for most of the genes in the real world .

Table 6 shows the best results over 30 runs of the above

methods in terms of S(n) value, where larger values are better

(S(n) values for NNGA are FCGA are taken from [30]). It

is clear that FRAG GA and NNGA [30] are comparable and

they both dominate others. Note that FRAG GA is a con-

ventional GA, while NNGA (hybrid GA) is a one using LK

heuristic [12]. The main reason for the good results obtained

by FRAG GA is that, biological solutions of microarray gene

ordering lie in more than one sub optimal point (in terms of

gene expression distance) rather than one optimal point and

there exists different gene orders with same biological score.

6 Discussion and conclusions

A new “nearest fragment operator” (NF) and a modified

version of order crossover operators (MOC) of GAs are

described along with demonstrating their suitability for solv-

ing both TSP and microarray gene ordering (MGO) problem.

A systematic method for determining appropriate number of

fragments in NF and appropriate substring length in terms

of the number of cities/genes in MOC are also provided.

These newly designed genetic operators showed superior

performance on both TSP and gene ordering problem. The

said operators are capable of aligning more genes with the

same group next to each other compared to other algorithms,

thereby producing better gene ordering. Infact, FRAG GA

produces comparable and sometimes even superior results

than NNGA, a GA which implements Lin-Kernighan lo-

cal search, for solving MGO problem in terms of biological

score.

The representation used in the present investigation is a

direct one (integer i = city/gene i) and also used in all other

state-of-the-art TSP solvers using genetic algorithm and LK

heuristic based approaches. An indirect representation, like

offset-based representation, in general takes more computa-

tional time in representation, whereas, there is no chance for

improving the solution quality over optimal results for most

of the TSP instances.

An advantage of FRAG GALK is that the quality of the

solution seems to be more stable than that obtained by LKH

and concorde chained LK, when used to solve the bench-

mark TSP problems. An evolutionary algorithm for solving

combinatorial optimization problems should comprise mech-

anisms for preserving good edges and inserting new edges

into offspring, as well as mechanisms for maintaining the

population diversity. In the proposed approach, nearest frag-

ment heuristic, modified order crossover, and LinKernighan

local search preserve good edges and add new edges. The

proposed method can seamlessly integrate NF, MOC, and

LK to improve the overall search.

The present investigation indicates that incorporation of

the new operators in FRAG GA and LK in FRAG GALK

yield better results as compared to other pure GAs, Self Or-

ganizing Map, and related LK based TSP solvers. With its su-

perior results in reasonable computation time FRAG GALK

can be considered as one of the state-of-the-art TSP solver.

Acknowledgment This work is partially supported by the grant no.
22(0346)/02/EMR-II of the Council of Scientific and Industrial Re-
search (CSIR), New Delhi.

References

1. Larranaga P, Kuijpers C, Murga R, Inza I, Dizdarevic S (1999)
Genetic algorithms for the traveling salesman problem: a review of
representations and operators. Artificial Intell Rev 13:129–170

2. Garey MR, Johnson, DS (1979) Computers and intractability: a
guide to the theory of NP-completeness. W. H. Freeman and Co.,
San Francisco

Springer

194 Appl Intell (2007) 26:183–195

3. Goldberg DE (1989) Genetic algorithm in search, optimization and
machine learning, Machine Learning, Addison-Wesley, New York

4. Tsai CF, Tsai CW, Yang T (2002) A modified multiple-searching
method to genetic algorithms for solving traveling salesman prob-
lem. In: IEEE int conf systems, Man and cybernetics, vol. 3, pp
6–9

5. Jiao L, Wang L (2000) A novel genetic algorithm based on immu-
nity. IEEE Transactions on Systems, Man and Cybernetics, Part A
30(5):552–561

6. Ray SS, Bandyopadhyay S, Pal SK (2004) New operators of genetic
algorithms for traveling salesman problem. Cambridge, UK, ICPR-
04 2:497–500

7. Fiechter CN (1994) A parallel tabu search algorithm for large trav-
eling salesman problems. Discrete Appl Math Combin Oper Res
Comput Sci 51:243–267

8. Zachariasen M, Dam M (1995) Tabu search on the geometric trav-
eling salesman problem. In: Proc. of int conf on metaheuristics, pp
571–587

9. Potvin JY (1993) The traveling salesman problem: a neural network
perspective. ORSA J Comput 5:328–348

10. Bai Y, Zhang W, Jin Z (2006) An new self-organizing maps strat-
egy for solving the traveling salesman problem. Chaos, Solitons &
Fractals 28(4):1082–1089

11. Stutzle T, Dorigo M (1999) ACO algorithms for the traveling sales-
man problem, evolutionary algorithms in engineering and computer
science. John Wiley and Sons

12. Lin S, Kernighan BW (1973) An effective heuristic for the traveling
salesman problem. Oper Res 21(2):498–516

13. Helsgaun K (2000) An effective implementation of the Lin-
Kernighan traveling salesman heuristic. Eur J Oper Res 1:106–130

14. Applegate D, Cook W, Rohe A (2000) Chained Lin-Kernighan for
large traveling salesman problems. Tech Rep Dept Comput Appl
Math Rice Univ

15. Gamboa D, Rego C, Glover F (2006) Implementation analysis of
efficient heuristic algorithms for the traveling salesman problem.
Computers & Operations Res 33(4):1154–1172

16. Tsai HK, Yang JM, Tsai YF, Kao CY (2004) An evolutionary algo-
rithm for large traveling salesman problems. IEEE Transactions on
Systems, Man and Cybernetics, Part B: Cyebernetics 34(4):1718–
1729

17. Reinelt G (1994) The traveling salesman: computational solutions
for TSP applications. Lecture notes in computer science, Springer-
Verlag 840

18. Bentley JL (1992) Fast algorithms for geometric traveling salesman
problems. ORSA J Computing 4(4):387–411

19. Johnson DS, McGeoch LA (1996) The traveling salesman problem:
a case study in local optimization. Local search in combinatorial
optimization. Wiley and Sons, New York

20. Davis L (1985) Applying adapting algorithms to epistatic domains.
In: Proc. int. joint conf. artificial intelligence, Quebec, canada

21. Oliver I, Smith D, Holland J (1987) A study of permutation
crossover operators on the traveling salesman problem. Second int.
conf. genetic algorithms, pp 224–230

22. Starkweather T, McDaniel S, Mathias K, Whitley D, Whitley C
(1991) A comparison of genetic sequencing operators. 4th Int. conf.
genetic algorithms, pp 69–76

23. Whitley D, Starkweather T, Fuquay D (1989) Scheduling problems
and traveling salesman: the genetic edge recombination operator.
3rd Int. conf. genetic algorithms, pp. 133–140

24. Homaifar A, Guan S, Liepins G (1993) A new approach on the trav-
eling salesman problem by genetic algorithms. 5th Int conf genetic
algorithms, pp 460–466

25. Biedl T, Brejov B, Demaine ED, Hamel AM, Vinar T (2001) Op-
timal arrangement of leaves in the tree representing hierarchical
clustering of gene expression data. Tech Rep 2001–14, Dept Com-
puter Sci., Univ. Waterloo

26. Spellman PT, Sherlock G, Zhang MQ, Iyer VR, Anders K, Eisen
MB, Brown PO, Botstein D, Futcher B (1998) Comprehensive
identification of cell cycle-regulated genes of the yeast saccha-
romyces cerevisia by microarray hybridization. Molecular Biology
Cell 9:3273–3297

27. Eisen MB, Spellman PT, Brown PO, Botstein D (1998) Cluster
analysis and display of genome-wide expression patterns. In: Proc.
national academy of sciences, vol. 95, pp 14863–14867

28. Tamayo P, Slonim D, Mesirov J, Zhu Q, Kitareewan S, Dmitrovsky
E, Lander ES, Golub TR (1999) Interpreting patterns of gene ex-
pression with self-organizing maps: methods and application to
hematopoietic differentiation. In: Proc. national academy of sci-
ences, pp 2907–2912

29. Tsai HK, Yang JM, Kao CY (2002) Applying genetic algorithms
to finding the optimal gene order in displaying the microarray data.
GECCO, pp. 610–617

30. Lee SK, Kim YH, Moon BR, (2003) Finding the Optimal Gene
Order in Displaying Microarray Data. GECCO, pp. 2215–2226

31. Applegate D, Bixby R, Chvtal V, Cook W (2003) Concorde pack-
age. [online]. www.tsp.gatech.edu/concorde/downloads/codes/src/
co031219.tgz.

32. TSPLIB, http://www.iwr.uniheidelberg.de/groups/comopt/software
/TSPLIB95/.

33. Website, http://www.psrg.lcs.mit.edu/clustering/ismb01/optimal.
html.

Shubhra Sankar Ray is a Visiting Research Fellow at the Center for
Soft Computing Research: A National Facility, Indian Statistical Insti-
tute, Kolkata, India. He received the M.Sc. in Electronic Science and
M.Tech in Radiophysics & Electronics from University of Calcutta,
Kolkata, India, in 2000 and 2002, respectively. Till March 2006, he
had been a Senior Research Fellow of the Council of Scientific and
Industrial Research (CSIR), New Delhi, India, working at Machine In-
telligence Unit, Indian Statistical Institute, India. His research interests
include bioinformatics, evolutionary computation, neural networks, and
data mining.

Sanghamitra Bandyopadhyay is an Associate Professor at Indian Sta-
tistical Institute, Calcutta, India. She did her Bachelors in Physics and
Computer Science in 1988 and 1992 respectively. Subsequently, she did
her Masters in Computer Science from Indian Institute of Technology
(IIT), Kharagpur in 1994 and Ph.D in Computer Science from Indian
Statistical Institute, Calcutta in 1998.

She has worked in Los Alamos National Laboratory, Los Alamos,
USA, in 1997, as a graduate research assistant, in the University of
New South Wales, Sydney, Australia, in 1999, as a post doctoral fellow,

Springer

Appl Intell (2007) 26:183–195 195

in the Department of Computer Science and Engineering, University
of Texas at Arlington, USA, in 2001 as a faculty and researcher, and
in the Department of Computer Science and Engineering, University
of Maryland Baltimore County, USA, in 2004 as a visiting research
faculty.

Dr. Bandyopadhyay is the first recipient of Dr. Shanker Dayal
Sharma Gold Medal and Institute Silver Medal for being adjudged the
best all round post graduate performer in IIT, Kharagpur in 1994. She
has received the Indian National Science Academy (INSA) and the In-
dian Science Congress Association (ISCA) Young Scientist Awards in
2000, as well as the Indian National Academy of Engineering (INAE)
Young Engineers’ Award in 2002. She has published over ninety articles
in international journals, conference and workshop proceedings, edited
books and journal special issues and served as the Program Co-Chair
of the 1st International Conference on Pattern Recognition and Ma-
chine Intelligence, 2005, Kolkata, India, and as the Tutorial Co-Chair,
World Congress on Lateral Computing, 2004, Bangalore, India. She
is on the editorial board of the International Journal on Computational
Intelligence. Her research interests include Evolutionary and Soft Com-
putation, Pattern Recognition, Data Mining, Bioinformatics, Parallel &
Distributed Systems and VLSI.

Sankar K. Pal (www.isical.ac.in/∼sankar) is the Director and Dis-
tinguished Scientist of the Indian Statistical Institute. He has founded
the Machine Intelligence Unit, and the Center for Soft Computing Re-
search: A National Facility in the Institute in Calcutta. He received a

Ph.D. in Radio Physics and Electronics from the University of Calcutta
in 1979, and another Ph.D. in Electrical Engineering along with DIC
from Imperial College, University of London in 1982.

He worked at the University of California, Berkeley and the Univer-
sity of Maryland, College Park in 1986-87; the NASA Johnson Space
Center, Houston, Texas in 1990-92 & 1994; and in US Naval Research
Laboratory, Washington DC in 2004. Since 1997 he has been serving
as a Distinguished Visitor of IEEE Computer Society (USA) for the
Asia-Pacific Region, and held several visiting positions in Hong Kong
and Australian universities. Prof. Pal is a Fellow of the IEEE, USA,
Third World Academy of Sciences, Italy, International Association for
Pattern recognition, USA, and all the four National Academies for Sci-
ence/Engineering in India. He is a co-author of thirteen books and about
three hundred research publications in the areas of Pattern Recognition
and Machine Learning, Image Processing, Data Mining and Web Intel-
ligence, Soft Computing, Neural Nets, Genetic Algorithms, Fuzzy Sets,
Rough Sets, and Bioinformatics.

He has received the 1990 S.S. Bhatnagar Prize (which is the most
coveted award for a scientist in India), and many prestigious awards
in India and abroad including the 1999 G.D. Birla Award, 1998 Om
Bhasin Award, 1993 Jawaharlal Nehru Fellowship, 2000 Khwarizmi In-
ternational Award from the Islamic Republic of Iran, 2000–2001 FICCI
Award, 1993 Vikram Sarabhai Research Award, 1993 NASA Tech Brief
Award (USA), 1994 IEEE Trans. Neural Networks Outstanding Paper
Award (USA), 1995 NASA Patent Application Award (USA), 1997
IETE-R.L. Wadhwa Gold Medal, the 2001 INSA-S.H. Zaheer Medal,
and 2005-06 P.C. Mahalanobis Birth Centenary Award (Gold Medal)
for Lifetime Achievement.

Prof. Pal is an Associate Editor of IEEE Trans. Pattern Analysis
and Machine Intelligence, IEEE Trans. Neural Networks [1994–98,
2003–06], Pattern Recognition Letters, Neurocomputing (1995–2005),
Applied Intelligence, Information Sciences, Fuzzy Sets and Systems,
Fundamenta Informaticae, Int. J. Computational Intelligence and Ap-
plications, and Proc. INSA-A; a Member, Executive Advisory Editorial
Board, IEEE Trans. Fuzzy Systems, Int. Journal on Image and Graph-
ics, and Int. Journal of Approximate Reasoning; and a Guest Editor of
IEEE Computer.

Springer

Gene ordering in partitive clustering using microarray expressions 1019

J. Biosci. 32(5), August 2007

1. Introduction

The recent advances in DNA array technologies have

resulted in a signifi cant increase in the amount of genomic

data. The most powerful and commonly used technique is

that involving microarray, which has enabled the monitoring

of the expression levels of more than thousands of genes

simultaneously. A key step in the analysis of gene expression

data is the identifi cation of groups/clusters of genes that

manifest similar expression patterns. This translates to the

algorithmic problem of clustering and ordering of gene

expression data.

The present article deals with the tasks of ordering genes

within clusters obtained from self-organizing map (SOM)

(Tamayo et al 1999). Although there is a rich literature on

gene ordering in hierarchical clustering framework (Eisen

et al 1998; Biedl et al 2001; Bar-Joseph et al 2001), there is

no work addressing and evaluating the importance of gene

ordering for gene expression analysis in partitive clustering

framework, to the best knowledge of the author. Partitive

clustering methods determine unique clusters but do not

order genes within cluster and the relationships among the

genes in a particular cluster are generally lost. To obtain

this relationship among genes in clusters, we propose a

Gene ordering in partitive clustering using microarray expressions

SHUBHRA SANKAR RAY
1,*, SANGHAMITRA BANDYOPADHYAY

2 and SANKAR K PAL
1

1Center for Soft Computing Research: A National Facility, 2Machine Intelligence Unit, Indian Statistical Institute,

Kolkata 700 108, India

*Corresponding author (Fax, 91-33-2578 8699; Email, shubhra_r@isical.ac.in)

A central step in the analysis of gene expression data is the identifi cation of groups of genes that exhibit similar

expression patterns. Clustering and ordering the genes using gene expression data into homogeneous groups was

shown to be useful in functional annotation, tissue classifi cation, regulatory motif identifi cation, and other applications.

Although there is a rich literature on gene ordering in hierarchical clustering framework for gene expression analysis,

there is no work addressing and evaluating the importance of gene ordering in partitive clustering framework, to the

best knowledge of the authors. Outside the framework of hierarchical clustering, different gene ordering algorithms are

applied on the whole data set, and the domain of partitive clustering is still unexplored with gene ordering approaches.

A new hybrid method is proposed for ordering genes in each of the clusters obtained from partitive clustering solution,

using microarray gene expressions. Two existing algorithms for optimally ordering cities in travelling salesman

problem (TSP), namely, FRAG_GALK and Concorde, are hybridized individually with self organizing MAP to show

the importance of gene ordering in partitive clustering framework. We validated our hybrid approach using yeast and

fi broblast data and showed that our approach improves the result quality of partitive clustering solution, by identifying

subclusters within big clusters, grouping functionally correlated genes within clusters, minimization of summation of

gene expression distances, and the maximization of biological gene ordering using MIPS categorization. Moreover,

the new hybrid approach, fi nds comparable or sometimes superior biological gene order in less computation time than

those obtained by optimal leaf ordering in hierarchical clustering solution.

Ray S S, Bandyopadhyay S and Pal S K 2007 Gene ordering in partitive clustering using microarray expressions; J. Biosci. 32 1019–1025]

http://www.ias.ac.in/jbiosci J. Biosci. 32(5), August 2007, 1019–1025, © Indian Academy of Sciences 1019

Keywords. Computational biology; evolutionary algorithms; genomics; linear programming; proteomics; soft computing

Abbreviations used: GA, genetic algorithm; MIPS, Munich Information for Protein Sequences; NF, nearest-neighbor; SOM, self-organizing

map; TSP, traveling salesman problem

Shubhra Sankar Ray, Sanghamitra Bandyopadhyay and Sankar K Pal1020

J. Biosci. 32(5), August 2007

novel hybrid method where, an existing pure gene ordering

algorithm called “FRAG_GALK” (Ray et al 2007), is used

to order genes in each clustering solution of SOM (Tamayo

et al 1999). For the purpose of comparison, instead of

FRAG_GALK, an existing traveling salesman problem

(TSP) solver Concorde (Applegate et al 2003) using linear

programming, and optimal leaf ordering in hierarchical

clustering solution (applied over the whole data set not

partitive clustering solution) by Bar-Joseph et al (2001),

are also used. Utility of the new hybrid algorithm is shown

in improving the quality of the clusters provided by any

partitive clustering algorithm by,

• identifi cation of subclusters within big clusters,

• grouping functionally correlated genes within

clusters,

• the maximization of biological gene ordering using

MIPS categorization, and

• using less computation time than those obtained

by optimal leaf ordering in hierarchical clustering

solution.

2. Existing approaches

2.1 Distance measure

The most popular and probably most simple measures for

fi nding global similarity between genes are the Pearson

correlation, a statistical measure of linear dependence

between random variables.

Let X=x
1
, x

2
, … , x

k
 and Y=y

1
, y

2
, … , y

k
 be the expression

vectors of the two genes in terms of log-transformed

microarray gene expression data obtained over a series

of k experiments. Using Pearson correlation the distance

between gene X and Y can be formulated as

C
x,y

 = 1 – P
x,y

, (1)

where P
x,y

 represents the centered Pearson correlation and is

defi ned as

where X and σ
x
 are the mean and standard deviation of the

gene X, respectively.

2.2 Gene ordering methods

Hierarchical clustering does not determine unique clusters.

Thus the user has to determine which of the subtrees are

clusters and which subtrees are only a part of a bigger

cluster. So in the framework of hierarchical clustering a

gene ordering algorithm helps the user to identify clusters

by means of visual display and interpret the data (Bar-Joseph

et al 2001), whereas, in partitive clustering clusters are

identifi ed by the algorithm automatically and the solutions

are robust and not sensible to noise (Tamayo et al 1999)

like hierarchical clustering. For partitive clustering based

approaches as well as for hierarchical clustering approaches

microarray gene ordering (MGO) within clusters using

gene expression information is necessary for the following

reasons:

 (i) Gene ordering helps to identify subclusters in big

clusters by means of visual inspection of the ordered

gene expression data (Bar-Joseph et al 2001).

 (ii) Genes that are adjacent in a linear ordering are

often functionally co-regulated and involved in

the same cellular process (Bar-Joseph et al 2001).

Biological analysis is often done in the context of

this linear ordering.

(iii) The relationships among the genes in a particular

cluster generated by partitive clustering algorithms

are generally lost. This relationship (closer or

distant) among genes within clusters can be

obtained using gene ordering approaches.

(iv) It provides smooth display of clustered genes,

where the functionally related genes are nearer in

the ordering.

Ideally, one would like to obtain a linear order of all genes

that puts similar genes close to each other; such that for

any two consecutive genes the distance between them is

small. So, gene ordering problem is similar to TSP (Pal et al

2006) where, cities are ordered instead of genes (Biedl et al

2001; Ray et al 2007; Tsai et al 2004). Let {1,2, … , n} be

the labels of the n cities and C = [c
i,j
] be an n × n distance

matrix where c
i,j
 denotes the distance of traveling from city

i to city j. The TSP is the problem of fi nding the shortest

closed route among n cities, having as input the complete

distance matrix among all cities. The total cost A of a TSP

tour is given by

The objective is to fi nd a permutation of the n cities, which

has minimum distance. Similarly, an optimal gene order

can be obtained by minimizing the summation of gene

expression distances (or maximizing summation of gene

expression similarities) between pairs of adjacent genes in

a linear ordering 1,2,..., n. This can be formulated as (Biedl

et al 2001)

where n is the number of genes and c
i,j+1

 is the distance/

similarity between two genes i and i + 1 obtained from

P
k

x X y Y

x y

x

ii

yi

k

,
,=

−⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟
−⎛

⎝
⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟=
∑1

1 σ σ
(2)

A n C C

i

n

i i n
() .= +

=

−

, + ,∑
1

1

1 1 (3)

F n C

i

n

i i
() = ,

=

−

, +∑
1

1

1 (4)

Gene ordering in partitive clustering using microarray expressions 1021

J. Biosci. 32(5), August 2007

distance/similarity matrix. The formula (eq. 4) for optimal

gene ordering is the same as used in TSP, except the

distance from the last gene to fi rst gene, which is omitted,

as the tour is not a circular one. In the related investigations,

FRAG_GALK (Ray et al 2007) and HeSGA (heterogeneous

selection genetic algorithm (Tsai et al 2004), was applied to

order genes of the whole dataset, and consequently clustering

information was missing from the ordering solution.

A method of ordering genes for a partitive clustering

solution is currently missing. Here, we defi ne the summation

of gene expression distances for a partitive clustering

solution as

where k is the total number of clusters, n
j
 is the number of

genes in cluster j, and C j

i,j+1
 is the distance/similarity between

two genes i and i + 1 in cluster j.

In this investigation we have used two different gene

ordering algorithms, FRAG_GALK (Ray et al 2007) and

Concorde’s TSP solver (Applegate et al 2003), to order genes

of individual clusters found by SOM, as they can obtain the

optimal order of cities to many of the TSPLIB instances; the

largest having 13,509 and 15,112 cities, respectively. While

FRAG_GALK is a genetic algorithm (GA) (Pal et al 2006)

based TSP solver, Concorde is a linear programming based

TSP solver and much slower than FRAG_GALK. Here we

briefl y discuss the various steps used in FRAG_GALK,

which are also available in Ray et al (2007). The steps are:

Step 1: Create the string representation (chromosome of

GA) for a gene order (an array of n integers), which is a

permutation of 1, 2, ······ , n with nearest-neighbor (NF)

heuristic. Repeat this step to form the initial population of

GA.

Step 2: The NF heuristic is applied on each chromosome

probabilistically.

Step 3: Each chromosome is upgraded to local optimal

solution using chained LK heuristic (Applegate et al 2003)

probabilistically.

Step 4: Fitness of the entire population is evaluated and

elitism is used, so that the fi ttest string among the child

population and the parent population is passed into the child

population.

Step 5: Using the evaluated fi tness of entire population,

linear normalized selection procedure is used.

Step 6: Chromosomes are now distributed randomly and

modifi ed order crossover operator is applied between two

consecutive chromosomes probabilistically.

Step 7: Simple inversion mutation (SIM) is performed on

each string probabilistically.

Step 8: Generation count of GA is incremented and if it is

less than the maximum number of generations (predefi ned)

then from step 2 to step 6 are repeated.

3. Materials and methods

3.1 Description of data sets

In the present investigation, data sets like cell cycle (Sherlock

et al 2001), yeast complex (Eisen et al 1998; Bar-Joseph et

al 2001), all yeast (Eisen et al 1998; Website: Eisenlab:

http://rana.lbl.gov./EisenData.htm) and fi broblast (Iyer

et al 1999) are chosen. Table 1 shows the name of the data

sets, number of genes in each dataset, number of biological

gene categories, name of experiment types and number of

time points under each type, and fi nally the total number of

time points for a particular dataset. The fi rst three data sets

of Saccharomyces cerevisiae consist of 652, 979 and 6221

genes, and 184, 79 and 80 time points, respectively. The genes

in the three data sets are classifi ed according to the top level

classifi cation (hierarchical structure) of Munich Information

for Protein Sequences (MIPS) (http://www.mips.com) into

16, 16, and 18 categories, respectively. For the cell cycle

data, fi rst we have downloaded 652 cell cycle regulated

gene names from the MIPS website. These gene names are

then uploaded in Stanford Microarray Database (Sherlock

et al 2001) and corresponding gene expression values are

downloaded with default parameters by selecting all the cell

cycle, sporulation, heat shock and diauxic shift experiments.

The fi broblast dataset consists of 517 genes and 18 time

points related to the response of human fi broblasts to serum.

According to gene omnibus (GO) annotation, 517 fi broblast

genes are distributed in 1347 categories. After downloading,

the order of genes (along with their expression vectors) is

randomized in each dataset to remove initial gene order

bias.

F n C

j

k

i

n

i i

j

j

1

1 1

1

1
() = ,

= =

−

, +∑ ∑ (5)

Table 1. Summary for different microarray data sets

Dataset No. of genes Category Experiments performed Total

Cell cycle 652 MIPS 16 Cell cycle 93 Sporulation 9 Shock 56 Diauxic shift 26 184

Yeast complex 979 MIPS 16 Cell cycle

18+14+15

Sporulation 7+4 Shock 6+4+4 Diauxic shift 7 79

All yeast 6221 MIPS 18 Cell cycle 60 Sporulation 13 Diauxic shift 7 80

Fibroblast 517 GO 1347 Serum

response 12

Cycloheximide 6 18

Shubhra Sankar Ray, Sanghamitra Bandyopadhyay and Sankar K Pal1022

J. Biosci. 32(5), August 2007

3.2 New hybrid algorithm for ordering genes in

partitive clustering

It is mentioned in § 2.2 that, FRAG_GALK is applied

separately on each of the gene clusters found by SOM to

identify subclusters within large clusters, and to group the

functionally correlated genes within clusters. The number of

nodes/clusters of SOM are chosen according to the number

of MIPS categories (top level of hierarchical tree) for yeast

data, and available information in Sharan et al (2003) for

fi broblast data.

4. Biological interpretation

In case of cell cycle, yeast complex, and all yeast data

the MIPS functional categorization is available for most

of the genes. The categorization is hierarchical in nature

and allows a gene to belong to more than one category. A

biological score, that is different from the similarity/distance

measures, is used to evaluate the fi nal gene ordering. Each

gene that has undergone MIPS categorization can belong

to one or more category, while there are many unclassifi ed

genes also (no category). A vector V(g) = (ν
1
, ν

2
, … , ν

j
) is

used to represent the category status of each gene g, where j

is the number of categories. The value of ν
j
 is 1 if gene g is in

the jth category; otherwise is zero. Based on the information

about categorization, the score of a gene order for multiple

class genes is defi ned as (Tsai et al 2004)

where N is the number of genes, g
i
 and g

i+1
 are the adjacent

genes and G(g
i
, g

i+1
) is defi ned as

where V(g
i
)

k
 represents the kth entry of vector V(g

i
).

For example consider the genes g
1
, g

2
, … , g

5
, which

are classifi ed into 15 categories and represented by the

following vectors:

V(g
1
) = (1,0,1,1,0,0,0,0,0,0,0,0,0,0,0)

V(g
2
) = (1,1,1,1,0,0,0,0,0,0,0,0,0,0,0)

V(g
3
) = (0,0,1,0,0,0,0,0,1,0,0,0,0,0,0)

V(g
4
) = (0,0,0,1,1,0,0,0,0,1,0,0,0,0,0) and

V(g
5
) = (0,0,0,0,1,0,0,0,0,1,0,0,0,0,0).

Considering the gene order g
1
,g

2
,g

3
,g

4
,g

5
,

G(g,g
2
) = 3, G(g

2
,g

5
) = 1, G(g

3
,g

4
) = 0, G(g

4
,g

5
) = 2, and

S(n) = G(g
1
,g

2
) + G(g

2
,g

3
)+ G(g

3
,g

4
)+ G(g

4
,g

5
)

= 3 + 1 + 0 + 2 = 6

Using scoring function S(n), a gene ordering would have

a higher score when more genes within the same group are

aligned next to each other. So higher values of S(n) are better

and can be used to evaluate the goodness of a particular gene

order.

5. Experimental results

Experiments of gene ordering are conducted in Matlab 7 on

Sun Fire V 890 (1.2 GHz and 8 GB RAM). The codes for Bar-

Joseph et al’s (2001) leaf ordering in hierarchical clustering

solution are downloaded from (Venet 2003). Performance of

the proposed FRAG_GALK for gene ordering is compared

mainly with Concorde’s linear programming algorithm and

Bar-Joseph et al’s method. SOM is available in Expander

(Sharan et al 2003) and used with 16, 16, and 18 clusters

for clustering cell cycle, yeast complex, and all yeast data

sets, respectively, as genes in these datasets are classifi ed

according to MIPS into 16, 16, and 18 functional categories.

For fi broblast data SOM is used with 6 clusters as 6 gene

clusters are identifi ed in Sharan et al (2003). Finally FRAG_

GALK and Concorde are applied separately on the gene

clusters obtained by SOM, and Bar-Joseph et al’s method is

applied on the average linkage based hierarchical clustering

solution for each dataset.

5.1 Relevance of gene ordering in partitive clustering

To show the utility of the hybrid method in identifying

different subclusters within big clusters and grouping the

functionally correlated genes within clusters, here for

illustration, the visual displays are presented for fi broblast

(Figure 1a, b) and yeast complex (Figure 1c, d) data. Using

SOM fi broblast genes are fi rst clustered in 6 clusters (stated

previously). Visual display of these 6 clusters is shown in

fi gure 1a. Observing this visual pattern no subcluster can be

identifi ed in each cluster. After applying FRAG_GALK on

each cluster, closely related genes with similar expressions

are aligned next to each other as shown in Figure 1b. Gene

ordering here suggests that 2 or more subclusters exists at

least in clusters 1, 4 and 6, and it will be useful to increase

the number of nodes of SOM to at least 9 for fi broblast data.

Note that, Iyer et al (1999) identifi ed 10 clusters of genes for

this data using average linkage clustering.

Yeast Complex data is fi rst clustered in 16 groups using

SOM. Visual display of fi rst 6 clusters/groups is shown

in fi gure 1c. When the genes are ordered in each cluster

with FRAG_GALK, 4, 4, 5, and 2 distinct subclusters

are identifi ed using visual display in clusters 2, 3, 4, and

5 respectively. Genes names along with their functional

categories (indexes) for each subcluster within cluster 4 are

shown in table 2 for the purpose of illustration. Names of

S n G g g

i

N

i i
() ,= (),

=

−

+∑
1

1

1 (6)

G g g V g V g
i i

k

j

i k i k
, ()+

=
+()= () ,∑1

1

1 (7)

Gene ordering in partitive clustering using microarray expressions 1023

J. Biosci. 32(5), August 2007

the functional categories corresponding to their indexes are

shown in table 3. These subclusters of highly coregulated

genes cannot be identifi ed if SOM is used alone. For example,

all the 9 genes in the 3rd subcluster of cluster 4 (YBR010W,

YNL031C, YBL003C, YDR225W, YDR224C, YNL030W,

YBR009C, YBL002W and YPL256C) are involved in cell

cycle and DNA processing, transcription, and protein with

binding function or cofactor requirement. While using SOM

these 9 genes are distributed in the cluster 4, after ordering

genes in cluster 4 of SOM with FRAG_GALK, they (the

9 genes) are tightly grouped and identifi ed easily using

visual display. With all these ordered and clustered genes

one can easily zoom in a useful small subset of genes in a

cluster which cannot be done alone with partitive clustering

methods. In a similar way, subclusters within big clusters are

identifi ed by Concorde for all the data sets.

5.2 Comparative Performance of Algorithms

The ultimate goal of an ordering algorithm is to order the

genes in a way that is biologically meaningful. In this

regard, table 4 compares the performance of our proposed

two hybrid approaches using FRAG_GALK and Concorde

with Bar-Joseph’s (Bar-Joseph et al 2001) leaf ordering

in hierarchical clustering solution in terms of the F
1
 value

Figure 1. Comparing SOM with ‘SOM+FRAG_GALK’ for Fibroblast data (a and b respectively) and Yeast Complex data (c and

d respectively). The expression profi les are represented as lines of coloured boxes using Expander (Sharan et al 2003), each of which

corresponds to a single experiment.

(a) (b) (c) (d)

Table 2. Gene subclusters found by SOM+FRAG_GALK and their functional category indexes in cluster 4 for yeast complex data

Cluster Subcluster Genes Functional index

4 1 YLR093C, YNL121C, YLR170C, YML112W, YBR160W, YBR171W, YLR378C,

YML019W, YPL234C, YOR039W

6

2 YKR068C, YLL050C, YGL200C, YML012W, YPL218W, YKL080W, YDR086C,

YNL153C, YKL122C, YLR292C, YGL112C, YLR268W YLR447C

6 and 9

3 YBR010W, YNL031C, YBL003C, YDR225W, YDR224C, YNL030W, YBR009C,

YBL002W, YPL256C

3, 4, and 7

4 YJL025W, YPR101W, YMR061W, YGR195W, YOR244W, YLR105C, YDL043C,

YPR056W, YPR057W

4

5 YGL100W, YNL261W, YKL144C, YNL151C, YJL008C, YER148W 7

Shubhra Sankar Ray, Sanghamitra Bandyopadhyay and Sankar K Pal1024

J. Biosci. 32(5), August 2007

(eq. 5), S value (eq. 6), and computation time. The

performance of an algorithm is better if F
1
value is smaller

and S value is larger. For Fibroblast data, no biological score

is provided as genes in the same biological group for this data

are rare. From the biological scores (table 4), it is evident

that FRAG_GALK provides biologically comparable gene

order with respect to Concorde and sometimes superior

gene order than ‘leaf ordering in hierarchical clustering

solution’ by Bar-Joseph et al (2001), for all datasets in least

computational time. For example, FRAG_GALK took 125

seconds to order all yeast data (6221 genes) as compared to

Concorde and Bar-Joseph et al’s method which took 2272

and 1989 seconds respectively.

6. Conclusion

A hybrid method of gene ordering in partitive clustering and

its utility in fi nding useful subgroups of genes within cluster,

grouping functionally correlated genes within clusters,

maximization of biological gene ordering using MIPS

categorization, and minimization of computation time, are

demonstrated. The hybrid approach not only determines

unique clusters, but also preserves the biologically

meaningful relationships among the genes within clusters.

Moreover, the hybrid method using SOM with FRAG_

GALK not only requires less computation time (125 s for

18 clusters of all yeast data) but also less amount of RAM

(0.1 GB RAM for clusters with 1000 genes) than original

Bar-Joseph’s method (1989 s and 2 GB RAM for all yeast

data). With the hybrid approaches one can easily zoom in a

useful small subset of genes in a cluster, which cannot be

done alone with partitive clustering methods.

In FRAG_GALK, parallel searching (with large

population in genetic algorithm) for optimal gene order in

gene clusters (closely related genes) is performed. While this

results in reduced searching time for FRAG_GALK than

Concorde and Bar-Joseph’s method, in terms of biological

score FRAG_GALK is comparable with Concorde and

sometimes superior to Bar-Joseph’s method. It is evident

from the experimental results that, the combination of

partitive clustering and FRAG_GALK is a promising tool

for microarray gene expression analysis.

References

Applegate D, Bixby R, Chvtal V and Cook W 2003 Concorde

Package. [Online], www.tsp.gatech.edu/concorde/downloads/

codes/src/co031219.tgz

Bar-Joseph Z, Gifford D K and Jaakkola T S 2001 Fast optimal

leaf ordering for hierarchical clustering; Bioinformatics 17

2229

Biedl T, Brejov B, Demaine E D, Hamel A M and Vinar T

2001 Optimal arrangement of leaves in the tree representing

hierarchical clustering of gene expression data (Technical

report, Department of Computer Sciemce, University of

Waterloo)

Eisen M B, Spellman P T, Brown P O and Botstein D 1998 Cluster

analysis and display of genome-wide expression patterns; Proc.

Natl Acad. Sci., USA 95 14863–14868

Iyer V R, Eisen M B, Ross D T, Schuler G, Moore T, Lee J C F,

Trent J M, Staudt L M et al 1999 The transcriptional program

in the response of human fi broblasts to serum; Science 283

83–87

Pal S K, Bandyopadhyay S and Ray S S 2006 Evolutionary

computation in bioinformatics: A review; IEEE Trans. Systems

Man Cybernetics Part C 36 601–615

Ray S S, Bandyopadhyay S and Pal S K 2007 Genetic operators

for combinatorial optimization in TSP and microarray gene

ordering; Appl. Intelligence 26 183–195

Sharan R, Maron-Katz A and Shamir R 2003 CLICK and

EXPANDER: a system for clustering and visualizing gene

expression data; Bioinformatics 19 1787–1799

Sherlock G, Hernandez-Boussard T, Kasarskis A, Binkley G,

Matese J C, Dwight S S, Kaloper M, Weng S et al 2001

The Stanford microarray database; Nucleic Acids Res. 29

152–155

Table 3. Indexes and corresponding functional category

Functional index Corresponding functional category

1 Metabolism

2 Energy

3 Cell cycle and DNA processing

4 Transcription

5 Protein synthesis

6 Protein fate (folding, modifi cation,

destination)

7 Protein with binding function or cofactor

requirement

8 Protein activity regulation

9 Cellular transport, transport facilitation and

transport routes

Table 4. Summation of gene expression distances (F
1
),

biological score (S), and computation time of ordering in seconds

(within parenthesis) for different algorithms

Data sets

Algorithm Cell cycle Yeast complex All yeast

SOM 442.94

354

547.16

792

3446.60

1730

SOM +FRAG_

GALK

301.72

386 (0.7)

330.54

1011 (1.13)

1919.15

2356 (125)

SOM

+concorde

301.72

386 (3.41)

330.54

1011 (15.26)

1919.15

2356 (2272)

Bar-Joseph 300.51

381 (1.8)

330.17

1024 (3.34)

1920.82

2350 (1989)

Gene ordering in partitive clustering using microarray expressions 1025

J. Biosci. 32(5), August 2007

Tamayo P, Slonim D, Mesirov J, Zhu Q, Kitareewan S, Dmitrovsky

E, Lander E S and Golub T R 1999 Interpreting patterns of gene

expression with self-organizing maps: Methods and application

to hematopoietic differentiation; Proc. Natl. Acad. Sci. USA 96

2907–2912

 Tsai H K, Yang J M, Tsai Y F and Kao C Y 2004 An evolutionary

approach for gene expression patterns; IEEE Trans. Info. Tech.

Biomed. 8 69–78

Venet D 2003 MatArray: a Matlab toolbox for microarray data;

Bioinformatics 19 659–660

ePublication: 28 June 2007

742 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 37, NO. 3, JUNE 2007

Dynamic Range-Based Distance Measure for
Microarray Expressions and a Fast

Gene-Ordering Algorithm

Shubhra Sankar Ray,
Sanghamitra Bandyopadhyay, Senior Member, IEEE, and

Sankar K. Pal, Fellow, IEEE

Abstract—This investigation deals with a new distance measure for
genes using their microarray expressions and a new algorithm for fast gene
ordering without clustering. This distance measure is called “Maxrange
distance,” where the distance between two genes corresponding to a par-
ticular type of experiment is computed using a normalization factor, which
is dependent on the dynamic range of the gene expression values of that
experiment. The new gene-ordering method called “Minimal Neighbor” is
based on the concept of nearest neighbor heuristic involving O(n2) time
complexity. The superiority of this distance measure and the comparability
of the ordering algorithm have been extensively established on widely
studied microarray data sets by performing statistical tests. An interesting
application of this ordering algorithm is also demonstrated for finding
useful groups of genes within clusters obtained from a nonhierarchical
clustering method like the self-organizing map.

Index Terms—Bioinformatics, clustering, combinatorial optimization,
data mining, dynamic range, evolutionary algorithm, gene expression,
ordering, self-organizing map (SOM), soft computing.

I. INTRODUCTION

The recent advances in DNA array technologies have resulted in a
significant increase in the amount of genomic data [1], [2]. The most
powerful and commonly used technique is that involving microarray,
which has enabled the monitoring of the expression levels of more
than thousands of genes simultaneously. Due to the large quantity
of information available from microarray, it is necessary to find an
appropriate distance measure for genes and to employ a process of
classification of the data in order to obtain initial conclusions about
the genes.

This investigation deals with the tasks of measuring the distance
between genes, their unidirectional ordering without clustering, and
ordering within clusters. The widely used measures for finding the
similarity between genes are the Pearson correlation and the Euclidean
distance. In computing the similarity, all the aforementioned measures
do not assign appropriate weights to gene expressions obtained from
different types of experiments, where the expressions differ by orders
of magnitude from one type to another. Consequently, gene expression
values in the lower dynamic range do get dominated by those with
higher dynamic range. A new similarity measure between genes called
“Maxrange distance” is defined in this correspondence, where local
(for a particular type of experiment) similarities between two genes
are first normalized with a factor dependent on the dynamic range of
gene expression values of that experiment (type) and then summed to
find a global distance.

Gene ordering [3] is primarily necessary for identifying groups of
highly coregulated genes (discussed in detail in Section II-B). Existing
methods using evolutionary algorithms [4], [5], local search [4], [5],

Manuscript received April 12, 2006; revised August 29, 2006. This paper
was recommended by Associate Editor W. Pedrycz.

S. S. Ray and S. K. Pal are with the Center for Soft Computing Re-
search, Indian Statistical Institute, Calcutta 700108, India (e-mail: shubhra_r@
isical.ac.in; sankar@isical.ac.in).

S. Bandyopadhyay is with the Machine Intelligence Unit, Indian Statistical
Institute, Calcutta 700108, India (e-mail: sanghami@isical.ac.in).

Digital Object Identifier 10.1109/TSMCB.2006.889812

and Concorde’s linear programming [6] for finding the optimal gene
order spend most of the time in repetitive searching for the lowest
value of the sum of global similarities within gene groups of the same
biological category and result in the same biological score for all
possible permutations of genes within the same group. To avoid this
situation, a fast gene-ordering algorithm called “Minimal Neighbor”
(MN), using nearest neighbor (NN) tour construction heuristic and
involving O(n2) time complexity, is described.

The superiority of the proposed Maxrange distance measure over
related measures is established by using them on three different
ordering algorithms and one hybrid algorithm. Similarly, the compa-
rability of the MN algorithm as compared to two existing algorithms
is demonstrated for three different distance measures. An interesting
application of the MN for ordering genes in the clusters found by the
self-organizing map (SOM) is also demonstrated.

II. EXISTING APPROACHES

A. Gene Clustering Methods

Clustering methods can be broadly divided into hierarchical and
nonhierarchical clustering approaches. Hierarchical clustering ap-
proaches (single, complete, and average linkage) [1]–[3] group gene
expressions into trees of clusters. They start with singleton sets and
merge all genes until all nodes belong to only one set. Nonhierarchical
clustering approaches, such as k means [7], SOM [8], and CLICK [9],
separate genes into groups according to the degree of distance among
genes. The relationships among the genes in a particular cluster
generated by nonhierarchical clustering methods are lost.

B. Gene-Ordering Methods

Hierarchical clustering does not determine unique clusters. So, in
the framework of hierarchical clustering, a gene-ordering algorithm
helps the user to identify subtrees that are clusters by means of visual
display and interpret the data [3]. For nonhierarchical clustering-based
approaches as well as for hierarchical clustering approaches, microar-
ray gene ordering within clusters using gene expression information is
necessary for the following reasons:

1) Gene ordering helps to identify subclusters in big clusters by
means of visual inspection of the clustered gene expression
data [3].

2) Genes that are adjacent in linear ordering are often functionally
coregulated and involved in the same cellular process [1], [2].
Biological analysis is often done in the context of this linear
ordering [3].

3) It provides smooth display of clustered genes, where the func-
tionally related genes are nearer in the ordering [2].

4) The relationships among the genes in a particular cluster gen-
erated by nonhierarchical clustering algorithms are lost. This
relationship (closer or distant) among genes within clusters can
be obtained using gene-ordering approaches.

An optimal gene order can be obtained by minimizing the summa-
tion of gene expression distances (or maximizing summation of gene
expression similarities) between pairs of adjacent genes in a linear
ordering 1, 2, . . ., n. This can be formulated as [2]

F (n) =

n−1∑
i=1

Ci,i+1 (1)

1083-4419/$25.00 © 2007 IEEE

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 37, NO. 3, JUNE 2007 743

TABLE I
SUMMARY FOR DIFFERENT MICROARRAY DATA SETS

where n is the number of genes, and Ci,i+1 is the distance/similarity
between two genes i and i + 1 obtained from the distance/similarity
matrix.

A hybrid method (first clustering then ordering) for ordering genes
for a hierarchical clustering solution is proposed in [3]. A method for
ordering genes for a nonhierarchical clustering solution is currently
missing. Although gene-ordering methods exist (described in the next
paragraph), the utility and application of these methods to individual
clusters of nonhierarchical solution are not reported. In the current
investigation, the summation of gene expression distances for a non-
hierarchical solution is defined as

F1(n) =

k∑
j=1

nj−1∑
i=1

Cj
i,i+1 (2)

where k is the total number of clusters, nj is the number of genes in
cluster j, and Cj

i,i+1 is the distance/similarity between two genes i and
i + 1 in cluster j obtained from the distance/similarity matrix.

Tsai et al. [4] formulated the gene-ordering problem as a travelling
salesman problem (TSP). Concorde’s TSP solver [6] can obtain the
optimal solutions to 107 of the 110 TSPLIB [10] instances; the largest
having 15 112 cities. Thus, Concorde appears to be the best TSP solver
currently available, and in Section V, comparisons of results for gene
ordering are shown with Concorde. Related works on gene ordering
are also available in [5] and [11].

III. MATERIALS AND METHODS

A. Preliminary Concepts of Microarray Technology

Fluorescence is currently the predominant method for microarray
signal detection [12]. A critical component of a fluorescence scanner is
the photomultiplier tube (PMT), in which fluorescent photons produce
electrons that are amplified by the PMT gain. For many microarray
scanners, the calibration curve (i.e., the curve showing the relationship
between dye concentration and fluorescence intensity) depends on the
PMT gain setting [12]. This PMT gain is also varied for different
types of experiments of different biological origin. DNA microarray
measurements normally assume a linear relationship between the
detected fluorescent signal and the concentration of the fluorescent dye
that is incorporated into the clone DNA or RNA molecules synthesized
from the test sample. Each PMT has its own linear dynamic range
within which signal intensity increases linearly with the increase of

fluorescent dye concentration [12]. This linear dynamic range also
fixes the dynamic range of the recorded microarray data (log ratio
values) [12] within which the data values are most reliable and used as
the normalization factor in the proposed distance measure to remove
variations of biological origin. For example, in Cell-Cycle-related
experiments, for dye Cy5, the PMT gain at 960 V fixes the intensity
range from x1 to x2, and for dye Cy3, the PMT gain at 760 V fixes
the intensity range from y1 to y2. So the linear dynamic range of
PMT fixes the linear dynamic range of the data from log2 x1/y1 to
log2 x2/y2. Note that this dynamic range is available either from the
supplementary information (website) of the article/data (Yeast data)
or upon request to the authors (Herpes data) and not from the data
sets, and hence is not sensitive to outliers. However, due to the wide
concentration range for genes expressed in a biological sample, the
detected fluorescence intensity does not necessarily remain in the
linear range for all genes tiled on a microarray. The proposed dynamic
range-based normalization (described in Section III-C) belongs to
the category of between-slide or multiple-slide normalization [13].
The two other normalization factors in this category, which aim to
allow experiment-to-experiment comparisons when different types
of experiment have substantially different spreads in log ratios, are
median absolute deviation (MAD) and variance regularization. The
two normalization methods, viz., MAD and variance regularization,
are dynamic range estimators (not the real one) and implemented for
the purpose of comparison. However, the results obtained were not
very encouraging.

B. Description of Data Sets

For gene ordering, data sets like Cell Cycle [14], Yeast Complex
[1], [3], All Yeast [1], [15], Fibroblast [16], and Herpes [17] are
chosen. Table I shows the name of the data sets, number of genes
in each data set, number of gene categories, name of experiment
types and number of experiments performed under each type, and
total number of experiments performed for a particular data set. The
dynamic range of expression values of each experiment type is shown
within parentheses. The dynamic range of available data represents
log ratios of −1.2 to 1.2 for the cell-cycle experiments, −3.0 to 3.0
for sporulation, −1.5 to 1.5 for the shock experiments, −2.0 to 2.0 for
the diauxic shift, −3.0 to 3.0 for Fibroblast data, and −13.0 to 13.0
for Herpes data. Herpes data are generated using radioactive probes
instead of fluorescent probes, and hence, a higher linear dynamic range
is observed compared to other data sets. The first three data sets of

744 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 37, NO. 3, JUNE 2007

Saccharomyces cerevisiae are classified into 16, 16, and 18 groups,
respectively, according to the Munich Information for Protein
Sequences (MIPS) [18] categorization. The genes in Fibroblast data
are classified into 1347 categories according to the Gene Omnibus
annotation. In Herpes data, the genes are broadly assigned to five
functional groups and available in [17]. For the Cell-Cycle data,
first, we downloaded 652 Cell-Cycle-regulated gene names from the
MIPS website. These gene names were then uploaded in the Stanford
Microarray Database [14], and corresponding gene expression values
are downloaded with default parameters by selecting all the cell cycle,
sporulation, heat shock, and diauxic shift experiments. Microarray
experiments often produce multiple missing expression values, nor-
mally due to various experimental problems. In this correspondence,
all the genes with more than 50% missing gene expression values are
first eliminated from the data set. Thereafter, for the remaining genes,
missing gene expression values are estimated using LSimpute [19]
software, a statistical java-based package to estimate missing values.

C. New Distance Measure

A number of measures of distance in studying the behavior of
two genes can be used, such as Manhattan [20], Euclidean [20], and
Pearson correlation distance [2]. Pearson correlation is oversensitive
to large threefold changes (peaks) in gene expression profiles due to
multiplication of expression vectors in dot product style and therefore
leads to false interpretation of distance between genes in certain cases.
Moreover, it is observed that often microarray data consist of different
sets of expression values corresponding to different experiment types.
Existing distance measures usually take the same normalization factor
(like standard deviation for Pearson correlation) for a gene. This nor-
malization factor is independent of the type of experiment, varies from
gene to gene, and performs global normalization to all the expression
values for a particular gene, thus loosing useful local information. But
a closer look at the gene expression data reveals that the dynamic
range of expression values differs with the type of experiment and
remains the same for all the genes in the data set. So, using the same
normalization factor is undesirable for all types of experiments, where
expression values differ by orders of magnitude from one kind of
experiment to another. Consequently, it may be appropriate and better
if normalization is performed

• separately for the different types of experiment with different
normalizing factors; thereby preserving the local information;

• keeping the same set of normalization factors for all the genes in
the data set.

Such an attempt is made in this correspondence, where two new dis-
tance measures are developed using Manhattan distance and Euclidean
distance, respectively (to avoid oversensitivity to threefold changes),
in which normalization is dependent on the type of experiment. This,
in turn, results in equal weighting of distance values for different
experiment types. The normalization factor is chosen as the linear
dynamic range of data values obtained from PMT for a particular type
of experiment.

Let

X =xe1
1 , . . . , xe1

i1
, xe2

1 , . . . , xe2
i2

, . . . , xem
1 , . . . , xem

im

Y = ye1
1 , . . . , ye1

i1
, ye2

1 , . . . , ye2
i2

, . . . , yem
1 , . . . , yem

im

be the expression vectors (levels) of the two genes in terms of log-
transformed microarray gene expression data obtained over a series
of m different types of experiment (e1, e2, . . . , em) consisting of

Fig. 1. Expression profile for three genes. According to Maxrange-M, the
distance between genes X and Y is smaller than Z and Y , which is in
opposition with Pearson correlation and Euclidean distance.

i1 + i2 + · · · + im experiments in total. Using Manhattan distance,
the Maxrange distance between X and Y is defined as

Maxrange − MX,Y =
1

m

m∑
r=1

1

ir
×
∑ir

j=1

∣∣xer
j − yer

j

∣∣
Maxer − Miner

(3)

where Maxer and Miner are the maximum and minimum log2(R/G)
values obtained from the linear dynamic range of the PMT (or radioac-
tive probe) for an experiment of type er .

The following can be stated about the measure:

1) 0 ≤ Maxrange − MX,Y ≤ 1;
2) Maxrange − MX,Y = 0 if and only if X = Y ;
3) Maxrange−MX,Y =Maxrange−MY,X (symmetric).

Using the Euclidean distance, the Maxrange distance between X
and Y is defined as

Maxrange − EX,Y =
1

m

m∑
r=1

1

ir
×

√∑ir

j=1

(
xer

j − yer
j

)2
Maxer − Miner

. (4)

Throughout the literature, we have used Maxrange-M and
Maxrange-E for representing Maxrange distance measure using Man-
hattan and Euclidean distance, respectively.

Let three genes X , Y , and Z with four different types of ex-
periments have the gene expression values X = 0.02,−0.1, 2.9, 0.1,
−0.1, 0.1,−0.15, 0.1, Y = 0.1,−0.05, 0.15,−0.2,−0.3, 0.64, 0.0,
0.3, and Z = 0.13,−0.09, 0.1,−0.2, 1.2, 1.2, 1.7, 1.9.

Assume that the first two expression values for all the genes
correspond to cell-cycle experiments with dynamic range between
1.2 and −1.2, the third and fourth values correspond to sporulation
experiments with dynamic range between 3.0 and −3.0, the fifth and
sixth values correspond to shock experiments with dynamic range
between 1.5 and −1.5, and the seventh and eighth values correspond to
diauxic shift experiments with dynamic range between 2.0 and −2.0.
So, the Maxrange-M distance and the Pearson correlation distance
between genes X and Y are 0.11208 and 0.85202, respectively.

To illustrate the difference between Maxrange-M and Pearson
correlation, consider Gene X and Gene Y in Fig. 1, which shows
two profiles (of length 8), which are highly similar according to the
Maxrange-M but almost dissimilar (uncorrelated) according to Pear-
son correlation. This is mainly due to the comparatively large value of

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 37, NO. 3, JUNE 2007 745

the threefold change in Gene X . As opposed to this, in Maxrange-M,
sensitivity to threefold change is avoided using Manhattan distance,
and normalization with a dynamic range of experiments correctly
reflects the fact that both profiles have similar expressions for three
types of experiments, namely cell cycle, shock, and diauxic shift, and
differs in only one expression (among two expressions) for sporulation
experiments. Maxrange-E distance also shows similar performance as
Maxrange-M. The Euclidean distance between X and Y is 2.8382,
and between Y and Z, it is 2.8317. But X differs with Y in only one
expression value of high-range experiment type (Maxer −Miner = 6),
whereas Z differs with Y in three expression values of relatively
small-range experiment type. So in the case of Euclidean distances,
experiment types with high range dominate experiment types with
small-range ones. As opposed to these, the Maxrange-M distance
between X and Y is 0.11208, which is less than the distance between
Y and Z (0.19365). The Maxrange-E distance between X and Y is
also less than the distance between Y and Z.

D. New Ordering Algorithm

Existing methods, using evolutionary algorithms [4], [5] for finding
the optimal gene order, spend most of the time in repetitive searching
for the lower value of the sum of gene expression distances in gene
groups (genes belonging to same category) and result in the same
biological score for all possible permutations of genes within the same
group. Under this situation, to avoid repetitive searching, the NN tour
construction heuristic can be used to find a near-optimal gene order
in terms of gene expression distance. The NN tour has the advantage
that it commits only a few severe mistakes in tour construction, while
there are long segments connecting nodes with short edges. It has
a disadvantage that several genes that are not considered during the
course of the algorithm are inserted at high costs in the end. To
overcome this to some extent, we propose a new heuristic-based MN
algorithm.

Let 1, 2, . . . , i, . . . , n represent the indices of n genes in the
microarray data set, and let the distance between gene i and i + 1 be
denoted as Ci,i+1. Given this microarray data set of n genes to be
ordered and pairwise distance/similarity (of each gene with all other
genes) kept in an n × n matrix (after calculating), the different steps
of applying MN are explained below.

Step 1) Find the closest (most similar) pair of genes and merge
them into a single array (string) so that there remains n − 2
genes.

Step 2) Consider only the two end genes of the new array and find
the two closest genes for each of them from the remaining
genes. Out of these two selected genes, find the one closer
to one of the end genes of the array and then place it next to
that. The other selected gene is not connected and kept with
the remaining genes. The index of this gene is stored for use
in the next step. (Note that if both the selected genes are the
same in this step, then no gene index can be stored and in
the next step we have to compute twice for the selection
of two genes, else, only one closest gene is needed to be
computed.)

Step 3) Repeat Step 2) until all genes are aligned into a single array
of size n.

The computational complexity of Step 1) is O((n/2)2) as the
distance matrix is a symmetric one. This step can also be performed
during the calculation of n × n distance matrix. For Steps 2)–3), the
worst case complexity is O(2 ∗ (n − 2) ∗ n). So the total complexity
of the algorithm is O(n2).

E. New Hybrid Algorithm for Ordering Genes in
Nonhierarchical Clustering

It is mentioned in Section II-B that a method for ordering genes for
a nonhierarchical clustering solution is currently missing, and that the
utility and application of existing gene-ordering methods to individual
clusters of nonhierarchical solution are not reported in literature. Here,
we propose a simple hybrid algorithm where MN is applied separately
on each of the gene clusters found by SOM to identify subclusters
within large clusters and to group functionally correlated genes within
clusters. This algorithm is referred to as “SOM + MN.” The number
of nodes/clusters of SOM is chosen according to MIPS categories
for Yeast data and available information in relevant literature for
Fibroblast and Herpes data. This hybrid method is proposed to show
the efficiency of MN in improving the solution quality of a nonhierar-
chical solution in a computationally effective way.

IV. BIOLOGICAL INTERPRETATION

A biological score, which is different from the similarity/distance
measures, is used to evaluate the final gene ordering. Each gene
that has undergone MIPS categorization can belong to one or more
categories, while there also are many unclassified genes (no category).
A vector V (g) = (v1, v2, . . . , vj) is used to represent the category
status of each gene g, where j is the number of categories. The value
of vj is 1 if gene g is in the jth category and 0 otherwise. Based
on information about categorization, the score of a gene order for
multiple-class genes is defined as [4]

S(n) =

N−1∑
i=1

G(gi, gi+1) (5)

where N is the number of genes, gi and gi+1 are the adjacent genes,
and G(gi, gi+1) is defined as

G(gi, gi+1) =

j∑
k=1

V (gi)kV (gi+1)k (6)

where V (gi)k represents the kth entry of vector V (gi). Note that S(n)
can also be used as the scoring function for single-class genes. Using
scoring function S(n), a gene ordering would have a higher score
when more genes within the same group are aligned next to each other.

V. EXPERIMENTAL RESULTS

The algorithms of gene ordering and clustering are implemented us-
ing mex files in Matlab 7 on Sun Fire V 890 (1.2 GHz and 8 GB RAM).
The codes for single, average, and complete linkage and the method
of Bar-Joseph et al. [3] are downloaded from [21]. The performances
of the proposed Maxrange-M and Maxrange-E distance are compared
with Pearson correlation, Euclidean distance, and Manhattan distance,
whereas the MN algorithm for gene ordering is compared mainly
with Concorde’s linear programming [6] algorithm. SOM is used with
16, 16, 18, 6, and 5 nodes (clusters) for clustering Cell Cycle, Yeast
Complex, All Yeast, Fibroblast, and Herpes data, respectively. Finally,
MN is applied separately on the gene clusters obtained by SOM in the
new hybrid algorithm (SOM + MN).

A. Comparative Performance of Algorithms and
Distance Measures

Table II shows the summation of gene expression distances in terms
of F (n) (computed using (1) for Concorde, MN, and Bar-Joseph)

746 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 37, NO. 3, JUNE 2007

TABLE II
SUMMATION OF GENE EXPRESSION DISTANCES COMPUTED IN

TERMS OF F (n) [(1) FOR CONCORDE, MN, AND BAR-JOSEPH] AND

F1(n) [(2) FOR SOM + MN] VALUE FOR DIFFERENT ORDERING

ALGORITHMS (ALGO.) AND DISTANCE MEASURES (DIST.)

and F1(n) value (computed using (2) for SOM + MN) with
(1) Maxrange-M, (2) Pearson correlation, and (3) Euclidean distance
for all the data sets and four ordering algorithms. Hereafter, the serial
numbers of these distances are used to denote them in the tables. In this
comparative study among ordering algorithms, Concorde provides the
lowest sum of gene expression distances in terms of F (n) (1) value
for all the distance measures and data sets, although it has the highest
computational complexity (O(2n)). MN and Bar-Joseph’s algorithm
provide comparable results in terms of F (n) value.

The ultimate goal of an ordering algorithm is to order the genes
in a way that is biologically meaningful. In this regard, Table III
compares the performance of our proposed approach with those of the
other ordering methods in terms of the S value (5). Three distance
measures are considered, namely: 1) Maxrange-M; 2) Pearson; and
3) Euclidean. The biological scores corresponding to Manhattan dis-
tance are found to be comparable to those for Pearson correlation
distance and hence omitted here. The percentages of improvement over
the lowest biological score (in terms of S value) in a particular data set
are shown within parentheses and defined as

PIi,j =
di,j − mini(di,j)

mini(di,j)
× 100 (7)

where di,j indicates the biological score (S value) in the ith row and
jth column of the result matrix in the concerned tables (Tables III and
IV), and mini(di,j) indicates the minimum biological score in column
j for all i.

Table IV shows the performance of our proposed approach “SOM +
MN” with respect to SOM alone for the same set of parameters.
These PI values in Tables III and IV are used in the next section for
conducting t-tests.

For Fibroblast data, no biological score can be provided as genes
in the same biological group for these data are rare. For each of the
distance measure and any algorithm, the biological scores (in terms
of S value) obtained using MAD (or variance regularization factor)
normalization are found to be inferior to the biological scores with
Maxrange normalization and hence are not provided here. Although in
most cases, Maxrange-E distance is found to be superior to Euclidean
distance and inferior to Maxrange-M; for All Yeast data, it performs
better (S(n) = 2431) than Maxrange-M (S(n) = 2388) for the MN
algorithm. However, the superiority of Maxrange-M is evident when

TABLE III
BIOLOGICAL SCORE AND PERCENTAGE OF IMPROVEMENT (PI)

VALUE (WITHIN PARENTHESES) FOR DIFFERENT GENE-ORDERING

ALGORITHMS (ALGO.) AND DISTANCE (DIST.) MEASURES

TABLE IV
BIOLOGICAL SCORE AND PERCENTAGE OF IMPROVEMENT (PI) VALUE

(WITHIN PARENTHESES) FOR “SOM + MN” AND SOM

different types of experiments are present in a particular microarray
data. For example, superior results are obtained with Maxrange-M for
most of the available algorithms for the Cell Cycle, Yeast Complex,
and All Yeast data sets (shown in first row for each algorithm in
Table III). The available measures for gene distance, like Manhattan
distance, Euclidean distance, and Pearson correlations, are suitable for

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 37, NO. 3, JUNE 2007 747

TABLE V
RESULTS OF t-TEST FOR DIFFERENT PAIRS OF DISTANCE MEASURES

the same type of experiments in microarray data, but they are unable to
assign different weights of distance for different types of experiments.
In contrast, the Maxrange-M and Maxrange-E distance provides this
flexibility, and hence, better results are obtained for multiple types of
experiments.

B. Statistical Analysis of Maxrange-M Distance Measure and MN
Ordering Algorithm

To statistically compare the performance of Maxrange-M distance
with Pearson correlation in the case of ordering algorithms, t-tests
are performed with the PI (7) values shown within parentheses in
Table III using

t =
PI1 − PI2√

V ariancePI1
n1

+ V ariancePI2
n2

(8)

where PI1 and V ariancePI1 are the mean and the variance of all the
available PI values for Maxrange-M distance in Table III. PI2 is used
for Pearson correlation and n1 = n2 = 16, as there are 16 PI values
available in total from Table III for each of the distance measures
with four data sets and four algorithms. So, the degrees of freedom
for t-test are 16 × 2 − 2 = 30. Similarly, t-test is also performed for
Maxrange-M distance and Euclidean distance. The two t values and
related p values are shown in Table V. The alternative hypothesis
(H1) that the average of “percentages of improvement over the lowest
biological score” for the Maxrange-M distance is better than the related
one (Pearson or Euclidean) is used in the calculation of t-statistics.
After finding the p values (from t-table) for corresponding t values,
we reject the null hypothesis for both cases with significance level
of 0.001 and 0.02, respectively, which suggests that there is strong
evidence against the null hypothesis in favor of the alternative.

Similar types of t-tests for the MN and related algorithm (Concorde
or Bar-Joseph) are also performed with the percentages of improve-
ment shown in Table III. The results are shown in Table VI. For
each algorithm, there are 12 PI values (for four data sets and three
distance measures), and hence, 12 × 2 − 2 = 22 degrees of freedom
are available for each t-test. From the results of t-test and p values,
the null hypothesis that “there is no difference between the averages
of “percentages of improvement over the lowest biological score”
for the two algorithms” is accepted for the pairs MN–Concorde and
MN–Bar-Joseph. The alternative hypothesis that the average of
“percentages of improvement over the lowest biological score” for
“SOM + MN” is better than SOM is favored in t-test with the PI
values shown in Table IV.

From the biological scores (Table III) and t-test results (Table VI), it
is evident that MN provides biologically comparable gene order with
respect to Concorde for all data sets and distance measure. Note that
the time complexity of MN is O(n2), whereas the time complexity
of Concorde is O(2n), where n is the number of genes. Therefore,
it is preferable to use the MN algorithm since it has the minimum
complexity. For example, MN took 0.008 s to order Yeast Complex

TABLE VI
RESULTS OF t-TEST FOR DIFFERENT PAIRS OF ALGORITHMS

Fig. 2. Comparing SOM with “SOM + MN” for (a) and (b) Fibroblast
data and (c) and (d) Yeast Complex data using Maxrange-M distance. The
expression profiles are represented as lines of colored boxes using treeview
software [1]. Some grouped genes obtained by MN [(b) and (d)] have similar
expression patterns.

data (979 genes) as compared to Concorde and Bar-Joseph’s method
that took 272 and 3.328 s, respectively.

C. Subcluster Identification and Grouping of Correlated Genes by
MN with SOM

To show how MN helps to identify subclusters within large clusters
and groups functionally correlated genes within clusters to improve the
solution quality of a nonhierarchical solution, MN is applied separately
on the gene clusters found by SOM. The results/improvements found
by combining these two algorithms are shown in Tables II, III, and VI.
Here, the visual displays are presented for Fibroblast [Fig. 2(a) and
(b)] and Yeast Complex [Fig. 2(c) and (d)] data. Fibroblast genes are
first clustered using SOM with six nodes. A visual display of these
six clusters is shown in Fig. 2(a). Observing this visual pattern, no
subcluster can be identified in each cluster. After applying MN on each
cluster, closely related genes with similar expressions are aligned next
to each other, as shown in Fig. 2(b). Gene ordering here suggests that
two or more subclusters exist at least in Clusters 1, 4, and 6, and it
will be useful to increase the number of nodes of SOM to at least nine
for Fibroblast data. Note that Iyer et al. [16] identified ten clusters of
genes for these data.

The Yeast Complex data set is first clustered in 16 groups using
SOM with 16 nodes. A visual display of the first six clusters/groups
is shown in Fig. 2(c). When the genes are ordered in each cluster with

748 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 37, NO. 3, JUNE 2007

TABLE VII
GENE SUBCLUSTERS IN THIRD AND FOURTH CLUSTER AND THEIR

FUNCTIONAL CATEGORY INDEXES FOR YEAST COMPLEX DATA.
THESE SUBCLUSTERS ARE IDENTIFIED USING SOM + MN

MN, four, four, five, and two distinct subclusters are identified using
visual display in clusters 2, 3, 4, and 5, respectively. Gene names along
with their functional category (indexes) for each subcluster within
the third and fourth cluster are shown in Table VII. The name of
the functional categories corresponding to their index is shown in
Table VIII. For example, all the nine genes in the third subcluster of
cluster 4 (YBR010W, YNL031C, YBL003C, YDR225W, YDR224C,
YNL030W, YBR009C, YBL002W, and YPL256C) are involved in
Cell Cycle and DNA processing, Transcription, and Protein with
Binding Function or Cofactor Requirement. While using SOM, these
genes are distributed in the cluster 4 and no subcluster can be identi-
fied. After ordering with MN, they are tightly grouped and identified
easily using visual display.

VI. CONCLUSION

A new measure called Maxrange, for evaluating the distance be-
tween genes, and a new MN gene-ordering algorithm are described in
this correspondence. These are used for efficiently ordering the genes
in terms of their expression values for complete microarray data sets
as well as in individual clusters found by SOM for those data sets. In
Maxrange-M and Maxrange-E distance, normalization is performed
separately with different normalizing factors for different types of ex-
periment. This makes it suitable for both single type and multiple types
of experiments. As a basic distance measure, Manhattan/Euclidean

TABLE VIII
FUNCTIONAL INDEXES AND CORRESPONDING FUNCTIONAL CATEGORIES

distance is used in Maxrange for their insensitiveness to large threefold
changes in the gene expression profiles.

In MN, the repetitive searching for optimal gene order in gene
groups (closely related genes) is avoided. While this results in reduced
time complexity (O(n2)) for MN, in terms of biological score, it is
comparable with Concorde (O(2n)), the best TSP solver currently
available. Also, it will be computationally expensive to apply Con-
corde or similar local search-based evolutionary algorithms to order
genes in individual clusters of a nonhierarchical clustering solution.
A novel hybrid method of gene ordering in SOM and its utility in
finding useful subgroups of genes within clusters is also demonstrated.
Experiments for each data set are also conducted with

√
n nodes for

SOM. In all these cases, the cluster number increased marginally, many
nodes are found with no genes associated with them, and some clusters
are found where genes belong to different biological categories and
cannot be identified without gene ordering.

A huge number of different types of experiment by different re-
search groups all over the world are conducted over genes to find
the functional correlation between them. In the future, more exper-
iments are likely to be appended in the same existing microarray.
This demands a distance measure like Maxrange-M, and a growing
number of genes for the same microarray data sets require fast ordering
algorithm like MN. It is evident from the experimental results that
Maxrange-M with MN performs the best in such situations. As such,
this combination seems to be a promising tool for microarray- and
gene-expression-related experiments.

ACKNOWLEDGMENT

The authors would like to thank B. L. Narayan for his help in statis-
tical analysis, anonymous reviewers for their suggestions in improving
the quality of research, and Dr. P. Kellam for providing the linear
dynamic range of Herpes data.

REFERENCES

[1] M. B. Eisen, P. T. Spellman, P. O. Brown, and D. Botstein, “Cluster
analysis and display of genome-wide expression patterns,” in Proc. Nat.
Acad. Sci., Dec. 1998, vol. 95, no. 25, pp. 14 863–14 868.

[2] T. Biedl, B. Brejová, E. D. Demaine, A. M. Hamel, and T. Vinar, “Optimal
arrangement of leaves in the tree representing hierarchical clustering of
gene expression data,” Dept. Comput. Sci., Univ. Waterloo, Waterloo, ON,
Canada, Tech. Rep. 2001-2014, 2001.

[3] Z. Bar-Joseph, D. K. Gifford, and T. S. Jaakkola, “Fast optimal leaf
ordering for hierarchical clustering,” Bioinformatics, vol. 17, no. 90 001,
pp. 22–29, 2001.

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 37, NO. 3, JUNE 2007 749

[4] H. K. Tsai, J. M. Yang, Y. F. Tsai, and C. Y. Kao, “An evolutionary ap-
proach for gene expression patterns,” IEEE Trans. Inf. Technol. Biomed.,
vol. 8, no. 2, pp. 69–78, Jun. 2004.

[5] C. Cotta, A. Mendes, V. Garcia, P. Franca, and P. Moscato, “Applying
memetic algorithms to the analysis of microarray data,” in Proc. Evo
Workshops, 2003, pp. 22–32.

[6] D. Applegate, R. Bixby, V. Chvátal, and W. Cook, (2003), Concorde
Package. [Online]. Available: www.tsp.gatech.edu/concorde/downloads/
codes/src/co031219.tgz

[7] R. Herwig, A. J. Poustka, C. Muller, C. Bull, H. Lehrach, and
J. O’Brien, “Large-scale clustering of cDNA-fingerprinting data,”
Genome Res., vol. 9, no. 11, pp. 1093–1105, Nov. 1999.

[8] P. Tamayo, D. Slonim, J. Mesirov, Q. Zhu, S. Kitareewan, E. Dmitrovsky,
E. S. Lander, and T. R. Golub, “Interpreting patterns of gene expression
with self-organizing maps: Methods and application to hematopoietic
differentiation,” Proc. Nat. Acad. Sci., vol. 96, no. 6, pp. 2907–2912,
Mar. 1999.

[9] R. Sharan and R. Shamir, “CLICK: A clustering algorithm with applica-
tions to gene expression analysis,” in Proc. Int. Conf. Intell. Syst. Mol.
Biol., 2000, pp. 307–316.

[10] TSPLIB. [Online]. Available: http://www.iwr.uniheidelberg.de/groups/
comopt/software/TSPLIB95/

[11] J. S. de Sousa, L. de C. T. Gomes, G. B. Bezerra, L. N. de Castro, and
F. J. V. Zuben, “An immune-evolutionary algorithm for multiple re-
arrangements of gene expression data,” Genet. Program. Evol. Mach.,
vol. 5, no. 2, pp. 157–179, 2004.

[12] L. Shi et al., “Microarray scanner calibration curves: Characteristics and
implications,” BMC Bioinformatics, vol. 6, no. (Suppl2):S11, pp. 1–14,
2005.

[13] Y. H. Yang, S. Dudoit, P. Luu, and T. P. Speed, “Normalization of cdna
microarray data,” in Proc. SPIE—Microarrays: Optical Technologies and
Informatics, M. L. Bittner, Y. Chen, A. N. Dorsel, E. R. Dougherty, Eds.,
2001, vol. 4266, pp. 141–152.

[14] G. Sherlock et al., “The Stanford microarray database,” Nucleic Acids
Res., vol. 29, no. 1, pp. 152–155, 2001.

[15] Website. [Online]. Available: http://rana.lbl.gov/EisenData.htm
[16] V. R. Iyer et al., “The transcriptional program in the response of hu-

man fibroblasts to serum,” Science, vol. 283, no. 5398, pp. 83–87,
1999.

[17] R. G. Jenner, M. M. Albà, C. Boshoff, and P. Kellam, “Kaposi’s
sarcoma-associated herpesvirus latent and lytic gene expression as
revealed by dna arrays,” J. Virol., vol. 75, no. 2, pp. 891–902,
2001.

[18] Munich Information for Protein Sequences. [Online]. Available: http://
www.mips.com

[19] T. H. Bo, B. Dysvik, and I. Jonassen, “Lsimpute: Accurate estimation of
missing values in microarray data with least squares methods,” Nucleic
Acids Res., vol. 32, no. 3, 2004. e34, pp. online.

[20] E. F. Krause, Taxicab Geometry: An Adventure in Non-Euclidean
Geometry. New York: Dover, 1986.

[21] D. Venet, “MatArray: A Matlab toolbox for microarray data,” Bioinfor-
matics, vol. 19, no. 5, pp. 659–660, 2003.

IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING 1

Combining Multi-Source Information through
Functional Annotation based Weighting: Gene

Function Prediction in Yeast
Shubhra Sankar Ray1, Sanghamitra Bandyopadhyay2, Senior Member, IEEE, and Sankar K. Pal1, Fellow, IEEE,

1Center for Soft Computing Research: A National Facility, 2Machine Intelligence Unit,
Indian Statistical Institute,

Kolkata 700108
Email: {shubhra r, sanghami, sankar}@isical.ac.in

Abstract

Motivation: One of the important goals of biological investigation is to predict the function of unclassified gene. An approach
in this direction involves identifying the group of its closest classified genes and assigning the common biological function of the
group to the unclassified gene, using different sources of information, such as microarray gene expressions, protein sequences,
and phenotypic profiles. Even in a model organism like Yeast, there are more than 1000 genes with unknown biological function
defined in Munich Information for Protein Sequences (MIPS) and Saccharomyces Genome Database (SGD). Although there is a
rich literature on Bayesian networks and their importance in multi data source integration and gene function prediction, there is
hardly any similar work in a functional annotation based weighting framework. In this investigation, we propose a new scoring
framework using functional annotations, called Biological Score (BS), for predicting the function of some of the unclassified
Yeast genes.

Methods: The Biological Score is computed by first evaluating the similarities between genes, arising from different data
sources, in a common framework, and then integrating them in a linear combination style. We use phenotypic profiles, cDNA
microarray expression, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway information, protein similarity through
transitive homologues, and protein-protein interaction information as data sources. The relative weight of each data source, in
the score, is determined adaptively by utilizing the information on functional annotations (Yeast GO-Slim: Process) of classified
genes, available from SGD. Genes are clustered by a method called K-BS, where, for each gene, a cluster comprising that gene
and its K nearest neighbors is computed using the proposed score (BS) and evaluated with MIPS annotation.

Results: We predict the functional categories of 417 classified genes from 417 clusters with 98.20 positive predictive value
(PPV), using K-BS and a P-value cut-off 1 × 10−13. This cut-off is then used in the method to predict the functional categories
of 12 unclassified Yeast genes.

Conclusions: Our experimental results indicate that considering multiple data sources and estimating their weights with Yeast
GO-Slim process annotation in the score can considerably enhance its PPV over individual data source. It has been found that
even a small proportion of annotated genes can provide improvements in true positive gene pairs.

Index Terms

gene expression, protein sequence, transitive homology, phenotypic profile, combinatorial optimization, bioinformatics.

I. BACKGROUND

Increasing quantities of high-throughput biological data have become available in recent years. Many of these, such as
phenotypic profiles [1], gene expression microarrays [2], protein sequences [3], KEGG pathway [4], protein-protein interaction
data [5], [6], protein phylogenetic profiles [7] and Rosetta Stone sequence [8] assess functional relationships between genes
on a large scale. These high-throughput data can be the key to assign accurate functional annotation to a significant number
of unclassified genes [9]. Microarray analysis can provide gene function prediction by analyzing coexpression relationships in
a high-throughput fashion. While gene expressions and phenotypic profiles are excellent tools for hypothesis generation, they
alone often lack the degree of specificity needed for accurate gene function prediction. This improvement in specificity can be
achieved through the incorporation of heterogeneous functional data in an integrated analysis [9].

The value of combining informations, obtained from different methods, for gene function predictions, has been illustrated
by several studies [3], [9]. Marcotte et al. [3] predicted many potential protein functions for Saccharomyces cerevisiae based
on a heuristic combination of different types of data, where confidence levels for protein-protein links are defined subjectively
on a case-by-case basis. Von Mering et al. [10] first developed quantitative methods to measure functional relationship among
genes from three different sources of information (including gene fusion, chromosomal proximity and phylogenetic profiles)
and predicted functional modules by using a clustering algorithm. In [9], heterogeneous data sources are integrated in Bayesian
network approach and functional modules are predicted by using a clustering algorithm based on the principle of KNN algorithm.
The network is constructed on some independence assumptions about different data sources and uses conditional probability
tables based on information elicited from yeast experts. Lee et al. [11] compared different classes of data (including functional
links extracted through literature search) and integrated them by using Bayesian Score. In this approach, all available log

IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING 2

likelihood scores, derived from the various data sets and lines of evidences, are added to find a combined similarity. Spirin and
Mirny [12] developed algorithms to analyze the structural properties of a predicted interaction network to identify the subsets
of genes that are densely connected among themselves, but sparsely connected with others. Yanai and Delisi [13] predicted
gene links by combining three different types of links through the union operation. The gene modules predicted by all these
studies have shown some level of consistency with the well-established biological concepts as described in MIPS [14], KEGG
[4], and other public data-bases.

In spite of the remarkable power and potential to address inferential processes, there are some inherent limitations in Bayesian
networks. The problem centers around the quality and extent of the prior beliefs used in Bayesian inference processing. A
Bayesian network is only as useful as the reliability of this prior knowledge. An excessively optimistic or pessimistic expectation
of the quality of these prior beliefs will distort the entire network and invalidate the result.

While most of the works regarding data source integration are based on Bayesian network, the approach of integrating
information from data sources in a linear combination style through functional annotation based weights, is still unexplored.
Moreover, all the pre-mentioned works do not incorporate transitive nature of protein homology and KEGG pathway similarity
extraction excluding Yeast genes. In this investigation, we present a new computational framework, using functional annotation
based weighting, for the prediction of gene function in yeast through phenotypic profile similarity, gene expression similarity,
protein similarity by transitive homology, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway similarity, interacting
protein information and evaluation of these information by MIPS [14] gene annotation. The novelty of our method lies in
the way of estimating the weights in a linear combination style, using gene annotations in Eq. 7 (described in Section II-
C). In a related work, Lee et al. [11] used a single free parameter for estimating weights where they pointed out that a
heuristic modification to the strict Bayesian approach performs better for integrating the diverse functional linkage data sets
by incorporating the relative weighting of the data (see supplementary material of [11]). In this approach, all available log
likelihood scores derived from the various data sets are added with a rank-order dependent weighting scheme. The resulting
weighted sum (WS), scoring the functional linkage between a pair of genes, is calculated as:

WS =
n∑

i=1

Li

Di−1
, (1)

where L represents the log likelihood score for the gene linkage from a single data set, D is a free parameter (weight) roughly
representing the relative degree of dependence between the various data sets, and i is the rank index in order of descending
magnitude of the n log likelihood scores for the given gene pair. The free parameter D ranges from 1 to α, and is chosen to
optimize overall performance (positive predictive value (PPV) and coverage) on the functional benchmark. In this method it
is not possible to have equal weights for any two data sources for D > 1. Moreover, here the weights follow a strict geometric
series, which in most cases will not reflect the relative importance of the data sources. All these limitations are not present in
our proposed scheme.

II. METHODS

We mainly focus on integrating phenotypic profiles, microarray gene expression, KEGG pathway related protein database
in Protein Information Resource (PIR) [15], protein sequence similarity by transitive homology, and protein-protein interaction
information as data sources. The main steps of our methodology for predicting gene functions can be summarized as:

i) extract pairwise similarity of genes, obtained from different data sources (see Section II-A);
ii) separately re-score the similarities in a common framework of Yeast GO-Slim: Process annotations (see Section II-B);
iii) integrate the re-scored similarities from different data sources through the proposed scoring framework (see Section II-C)

and calculate the combined score;
iv) for each gene g, form a cluster comprising that gene and its K nearest neighbors using the proposed score and predict

the function of g by noting the functional enrichment of the cluster using MIPS annotation (see Section II-D).
Each of the above steps are discussed in detail in the following subsections. In brief, in the proposed scoring framework,

the weights of the re-scored similarities from different data sources are determined by adaptively maximizing the PPV of the
score, using Yeast GO-Slim process annotations [16] of known genes. The weighting scheme enables all possible weighting
(including equal and zero weighting) of data sources by first assigning each data source a weight that varies from 0 to α
and then optimizing the weights using an objective function, involving the PPV between gene pairs using Yeast GO-Slim
process annotation. The aim is to predict gene function from clustering solutions, rather than obtaining detailed interaction
relationships among the genes. Our method predicts the functional categories of 12 unclassified Yeast genes from 12 clusters
with 98.20 PPV . We also observed that even a small proportion of classified (annotated) genes can provide improvements in
predicting true positive gene pairs. Moreover, for evaluating the results further, we merged the available annotations from Yeast
GO-Slim process and MIPS for all the genes, and then split the genes into independent training and test sets. The training set
is used to determine the weights, while the independent test set is used to compute the PPV and to evaluate the gene pairs
and clustering results. The process is repeated 10 times and the cross-validation result is reported.

IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING 3

A. Data Sources and Similarity Extraction Techniques

Here we describe the different data sources and their respective similarity extraction techniques.
1) Phenotypic Profile: Recently, Brown et al. [1] presented a method for the global analysis of the function of genes in

budding yeast. The method is based on hierarchical clustering of the quantitative sensitivity profiles of the 4756 strains with
individual homozygous deletion of all nonessential genes, with each gene replaced by a cassette containing a 20-mer molecular
barcode’ unique for each deletion mutant. They showed the method to be superior than other global methods for identifying
function of genes involved in various DNA repair, damage checkpoint pathways, and other interrogated functions. Analysis of
the phenotypic profiles of the 51 diverse treatments places a total of 860 genes of unknown function in clusters with genes
of known function. We use this complete phenotypic profile data for quantitative phenotypic profile similarity extraction with
Pearson correlation [1].

Let X = x1, x2, · · · , xk and Y = y1, y2, · · · , yk be the phenotypic profiles of two genes obtained over a series of k different
treatments. Using centered Pearson correlation, the similarity between genes X and Y is defined as

PcX,Y =
1
k

k∑
i=1

(
xi − X

σX

)(
yi − Y

σY

)
(2)

where X and σX are the mean and standard deviation of the gene X , respectively. σX is defined as

σX =

√√√√1
k

k∑
i=1

(xi − X)2. (3)

The Pearson correlation has value between -1 and 1, where 1 indicates a linear relationship between the two vectors.
When the phenotypic profile data set is downloaded from the website it is found that out of 51 treatments some treatments

are missing for some genes (strains). For the subsequent analysis to be as informative as possible, it is essential that the
missing values have to be estimated in order to analyze the available data and the estimates for the missing values are as
accurate as possible. Currently, there is no state-of-the-art missing value estimation method for phenotypic profiles. Alternatively,
missing values in phenotypic profiles can be estimated using the methods that are used for microarray gene expression. In this
phenotypic profile data set, all the genes with more than 50% missing values are first eliminated from the dataset. Thereafter
for the remaining genes missing values are estimated using LSimpute [17] software, a state-of-the-art statistical java based
package to estimate missing values in gene expression data set. In LSimpute software, two basic methods based on least
squares principle, one utilizing correlations between genes (LSimpute gene) and the other utilizing correlations between arrays
(LSimpute array), are used to estimate missing values. A robust method (LSimpute adaptive) using weighted averages of
the estimates from LSimpute gene and LSimpute array for adaptive estimates is also available in LSimpute and used in this
investigation.

Phenotypic profile data is succeptable to biases created during the PCR amplification reaction. The detailed procedure of
generating and normalizing the data is available in Brown et al. [1]. In brief, each gene (strain) in phenotypic profile data is
associated with four hybridization signals on the high-density oligonucleotide array generated in two separate PCR labeling
reactions [1]. The data is then normalized by Brown et al. in the experimental array to that of the control array in order to
eliminate any bias created during the PCR amplification reaction. The normalized data is downloaded from the supplimentary
material of [1] and used in this investigation.

2) Gene Expression: We use the All Yeast [2], [18] data for gene expression similarity extraction. Brown et al. [1] have
shown that even with 30 distinct biological conditions for gene expression, GO term ribosome biogenesis (GO:0007046)
tends to dominate gene pairs implicated by coexpression. As we have already used phenotypic profiles, which implicate gene
relationships over a broad range of biological processes, here we only use the widely studied All yeast data.

A number of measures in finding the microarray gene expression similarity can be used for gene annotation and grouping.
The most popular and probably most simple measures for finding global similarity between genes are the Pearson correlation
[9], a statistical measure of (linear) dependence between random variables, and the Euclidean distance [3]. We use centered
Pearson correlation for extracting gene expression similarity as mentioned in the previous section.

To identify relationship among genes, involved in multiple biological functions or processes, many microarray experiments
with different biological origins are conducted. These experiments with multiple microarray slides are sources of non-biological
variation between slides such as dye biases, sample preparation or hybridization differences, scanner calibrations, slide printing
variations, volume of initial RNA, etc. Some of these variabilities can be corrected by data normalization before analysis
of the data. Normalization can be performed by removing saturated signals from microarray, background correction, low
expression genes correction, etc. In cDNA microarray related investigations, many different methods are developed in order
to compensate for dye-effects and other non-biological variations between arrays. The All Yeast dataset is downloaded from
Stanford Microarray Database [19] with default parameters. The default parameters include all types of normalization applicable
to that data and suggested by the experts.

IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING 4

Microarray experiments often produce multiple missing expression values, normally due to various experimental problems.
As gene expression analysis generally requires a complete data matrix as input, the missing values have to be estimated in
order to analyze the available data. Alternatively, genes with missing expression values can be removed until no missing values
remain. However, for arrays with only a small number of missing values, it is desirable to estimate those values [17]. For
the All Yeast data, we estimated the missing values using LSimpute adaptive [17] in a similar fashion to phenotypic profiles,
mentioned in Section II-A.1.

3) KEGG pathway: The pathway information for genes in KEGG [4] can be utilized as a reference for functional recon-
struction. All the protein sequences, except Yeast proteins, corresponding to each pathway (121 pathways in the second level)
are downloaded from PIR [15]. Profile vector for each protein in Yeast is computed by comparing its sequence across 121
pathway databases, using BLAST [20]. The method is similar to phylogenetic profile [7] construction, where, each pathway
database is replaced by all proteins within a species. The pathway profiles of genes, computed using KEGG pathway databases,
are denoted as KEGG profiles.

To find the similarity between two genes using KEGG profiles, we used the ratio of dot product value and OR value between
two profiles. The similarity matrix has a highest similarity value of 1. Hence, the similarity values, obtained by all pair-wise
comparison, have a dynamic range from 0 to 1 and its normalization is unnecessary. Note that, the genes, whose protein
sequences are not available, are assigned a pathway profile similarity value of 0 w.r.t. all other genes (proteins).

4) Protein Sequence: Comparing the protein sequences presents an alternative prominent approach for gene annotation and
analysis. Sequence-based comparative analysis also proved crucial for deciphering functions of genes and proteins. As the
proteins are products of coding regions (open reading frames) of the genes, the integration of expression data similarity with
protein sequence similarity for gene analysis could potentially provide new insights into the relation between gene functions.
Protein similarity information is one of the major components of biological knowledge, which contains mostly known and
validated protein (or gene) relations. Intuitively one can assume that all the protein relations arising from direct protein similarity
search is available in the literature and will not help in predicting functions for unclassified genes in a widely studied organism
like Yeast. As compared to direct protein similarity search, the field of searching gene/protein similarity through phylogenetic
profiles (PP) [7], Rosetta Stone sequence (RS) [8], and transitive homology [21] are relatively new methods and with increasing
number of fully sequenced genomes the search space of these methods are increasing rapidly. In this investigation, transitive
homologues are used instead of PP and RS, for extracting protein similarity, as its accuracy is reported to be higher than PP
and RS in literature [22], [23]. To detect transitive homologues by the third intermediate sequence, 37,66,477 protein sequences
are downloaded from UniProt [24].

Transitive homology detection method [21]–[23] works by searching the query sequence against the database with a
conservative threshold to find the closely homologous sequences and using these homologous sequences as seeds to search the
database to find remotely homologous sequences with a less conservative threshold. The method has been shown to be close
to the profile [7] based methods and better than a direct pairwise homology search [21]. Our findings are in agreement with
[22] that, this homology transitivity can be used as the main source for gene pairing and predicting functions of unknown
genes. To find the transitive homologues, homology comparisons are performed among target proteins and 37,66,477 proteins
downloaded from UniProt [24], by using BLASTP in BLAST [20]. Before comparison all the yeast proteins are removed from
the downloaded database. Let the similarity between two protein sequences A and B be BA,B . The value BA,B is replaced by
BA,C ×BC,B if there exists a sequence C such that BA,C ×BC,B is larger than the current value of BA,B . This transformation
takes advantage of the transitive homology of sequences A and B through the intermediate sequence C, assuming that sequences
A and C and sequences B and C are independently homologous [23]. For example, consider the transitive homology between
sequence a and sequence b through the third sequence c. The E-values between sequence a and sequence c, sequence c and
sequence b, as well as sequence a and sequence b are 0.01, 0.005, and 20 respectively. The protein similarities Ba,c, Bc,b, and
Ba,b are 0.8, 0.9, and 0.2 respectively. The homology between sequence a and sequence b cannot be detected with their direct
E-value. However, the value of Ba,b is assigned to 0.8 × 0.9 = 0.72 because of the transitive sequence homology.

Instead of storing raw BLAST score as the similarity between two protein sequences, we use the metric of ProClust [25]
where the metric value scales from 0 to 1. It is the ratio of the raw BLAST score of the sequence alignments to the raw
BLAST score of one of those two sequences aligned to itself. The transitive protein similarity value also scales from 0 to 1
and its normalization is unnecessary. Here also the genes, whose protein sequences are not available, are assigned a transitive
protein similarity value of 0 w.r.t. all other genes.

5) Protein-Protein Interaction: Protein-protein maps promise to reveal many aspects of the complex regulatory network
underlying cellular function [10]. For this study, manually curated catalogues of known protein-protein interactions are
downloaded from BioGRID [6] and binary interactions are used as the common unit of analysis. For a given pair of
genes/proteins the similarity value is 1 or 0, indicating a interaction present or absent, respectively. Since the similarity value
scales from 0 to 1, its normalization is unnecessary. The BioGRID database/catalogue includes more than 90000 interactions
by combining results obtained from synthetic lethality, affinity capture, two-hybrid, epistatic miniarray profile, reconstituted
complex, co-crystal structure, co-purification, dosage rescue, phenotypic enhancement, phenotypic suppression, synthetic growth
defect, co-fractionation, biochemical activity, synthetic rescue, and protein-peptide based experiments. The related references
are available in BioGRID.

IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING 5

B. Scoring the Similarities in a Common Framework

Our working hypothesis is that each set of data has an intrinsic error rate and a limited coverage but informs us to some
extent about the tendency for genes to operate in the same cellular systems and biological processes in the cell. We can therefore
construct a more accurate and extensive functional coupling between yeast genes across a broad set of data (experiments). The
prerequisite of this strategy is that we have a unified scoring scheme for testing the heterogeneous data sets, even when the
data sets are accompanied by their own intrinsic scoring schemes (such as Pearson Correlation for phenotypic profile and gene
expression). This re-scoring by a single criterion allows us to directly measure the relative merit of each data set, and then to
integrate the data sets with weights that reflect this merit. In this regard, the similarities arising from various heterogeneous
data sources are separately re-scored, based on the common framework of Yeast GO-Slim process annotations of genes in the
SGD database [16]. Genes/proteins that occur in the same process are presumed to be functionally linked. The proportion of
true positive (TP) gene pairs at a particular similarity value (computed from a data source) can be used as a single criterion
for re-scoring the similarity values, where TP gene pairs are defined as pairs of genes i and j, such that genes i and j have
an overlapping (explicit or implicit) GO (Gene Ontology) term annotation. In [9] proportion of TP pairs (positive predictive
value (PPV)) is defined as

PPV =
no. of pairs predicted by method that share common GO term assignment

total no. of pairs predicted by method
. (4)

The hierarchical nature of GO and multiple inheritance in the GO structure can lead to evaluation problems if we consider
only the particular GO term with which a gene is annotated [9]. To alleviate this problem, we consider the SGD Yeast GO-Slim
process annotations, where every gene is annotated in the same level without any tree based structure. For every gene g, that
has undergone Yeast GO-Slim process annotation, a vector

V (g) = (v1, v2, · · · , vj) (5)

is used to represent its category (Yeast GO-slim process) status, where j is the number of categories. The value of vj is 1
if gene g is in the jth category; otherwise is zero. Based on the information about categorization, the positive predictive value
(PPV) at a given similarity value, can be defined as

PPV =
∑n

i=1

∑j
m=1(V (gi)m × V (gir)m)

n
, (6)

where
∑j

m=1(V (gi)m × V (gir)m) = 1 if
∑j

m=1(V (gi)m × V (gir)m) ≥ 1, gi and gir form a gene-pair, n is the number of
annotated gene pairs at a given similarity value, and V (gi)m represents the mth entry of vector V (gi).

The PPV can be interpreted as being proportional to the accuracy of the data sources and their ability to predict the
cellular/biological processes involved at a given similarity value. In PPV a gene pair is considered as a predicted pair if both
the genes in the pair are classified in Yeast GO-Slim process. According to Yeast GO-Slim process and MIPS, there are 6069
and 6131 annotated genes (ORFs) for yeast of which 4387 and 4737 genes, respectively, are classified to some biological or
functional process and the remaining genes are unclassified.

Figure 1 compares the similarity values obtained from different data sources in terms of their PPV . The PPV for
intermediate similarity values, that are not plotted in Fig. 1, are calculated from the slopes of the respective curves. The
similarities extracted from protein-protein interactions are binary relations in our study. Therefore, PPV for protein-protein
interactions has a constant value 0.69 at a similarity value of 1 and hence it is not shown in Fig. 1.

C. New Framework for Data Source Integration

As the similarities computed from different data sources are re-scored (see Section II-B) on a single criterion and common
framework of Yeast GO-Slim process annotations, they are directly comparable and can be integrated even when the natures
of experiments are distinct (e.g., comparing phenotypic profiles to protein-protein interactions). The PPV reflect the accuracy
of similarity values, but do not provide any information about importance/weight of one data source in presence of the other
data sources, in predicting gene pairs. Consequently, it will be more appropriate and better if

1) PPV of each data source, in presence of other data sources, is separately weighed by a factor and then integrated;
2) factors are dependent on the PPV of the integrated PPV of different data sources.

Such an attempt is made in this article with a new score where, PPV computed from phenotypic similarity (Pp), gene
expression similarity (Pm), KEGG pathway profile similarity (Kp), protein similarity through transitive homologue (B), and
protein-protein interaction information (I) between two genes X and Y are integrated through weights a, b, c, d, and e in a
linear combination style. This score is referred to as Biological Score (BS) and is defined as

BSX,Y =
a × PpX,Y + b × PmX,Y + c × KpX,Y + d × BX,Y + e × IX,Y

a + b + c + d + e
(7)

IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING 6

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Similarity Value−−−−−>

po
si

tiv
e

pr
ed

ic
tiv

e
va

lu
e

(P
P

V
)−
−
−
−
−
−

>

Transitive homology
KEGG Pathway profile
Microarray
Phenotypic Profile

Fig. 1. Comparing the re-scored similarity values for different types of data sources to obtain equivalency in the common framework of Yeast GO-Slim
process annotations. The positive predictive values (PPV) versus the similarity values are plotted for each data source.

where a, b, c, d, and e are varied within range 0 to α in steps of 1 to find a combination that maximizes the PPV for a
user defined number of top gene pairs. Note that, the weights a, b, c, d, and e are assigned to the complete PPV matrices
calculated from individual data sources. The following can be stated about the score:

1) 0 ≤ BSX,Y ≤ 1
2) BSX,Y = BSY,X (symmetric).

The proposed scoring framework for data source integration, in Eq. 7, is based on data source weighting where the re-
scored similarity spaces, available from different data sources, are adaptively transformed using a set of weighting coefficients.
Intuitively, more important similarity spaces should be assigned larger weights than less important ones, while irrelevant ones
should be assigned zero weight. Although the proposed framework has some common working principle with feature weighting
(FW) [26], it cannot be categorized as FW because what is computed using BS is the pair-wise gene similarities and not the
set of features of any individual gene.

Estimation of Weights for Maximization of PPV : We maximize the PPV , using Yeast GO-Slim process annotations, for
top gene pairs by varying the weights a, b, c, d, and e in the BS (Eq. 7). For each set of values of a, b, and c, the top gene
pairs are identified with a gold standard cut-off value. Our gold standard cut-off value and gold standard of top gene pairs are
determined from KEGG pathway profiles, which provides 26432 gene pairs with similarity value 1 and constant PPV of .81.
These gene pairs are the most accurate of all, whereas the accuracy (PPV) of other data sources, as well as gene pairs below
top 26432 for KEGG pathway profiles, vary considerably. We now use the following steps to estimate the weight factors a, b,
c, d, and e in the Biological Score:

Step 1) All the factors are assigned an initial value of 1.
Step 2) BS values are calculated for all the gene pairs and sorted in descending order to identify the cut-off value above which

the top 26432 gene pairs are available.
Step 3) PPV is calculated for the top 26432 gene pairs.
Step 4) The weight factors are now varied in steps of .1 and the steps from 2 to 3 are repeated to find a combination of weights

for which the PPV is maximized.

Figure 2 shows how PPV , using Yeast GO-Slim process, varies for different values of weight factors ranging from 0 to 100,
in steps of 1. The curves show instances where one weight factor is varied and the other weight factors are kept constant.
Experiments are also conducted by excluding the KEGG pathway profile database and the corresponding curves are reffered
to as c = 0.

D. Gene Function Prediction

For biological function prediction of each gene, a cluster comprising that gene and its K nearest neighbors is computed using
the proposed score (BS). The function for each gene is predicted from the top K neighbors and selecting a gold standard BS
cut-off value obtained from KEGG pathway profiles using MIPS October 2005 classification. The gene clustering method is
denoted as K-BS, where each gene is considered once for its function prediction and allows its neighbor genes to be a member

IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING 7

0 10 20 30 40 50 60 70 80 90 100
0.65

0.7

0.75

0.8

0.85

0.9

Value of weights for different data sources−−−−−>

Po
si

tiv
e

pr
ed

ic
tiv

e
Va

lu
e

(P
PV

) u
si

ng
 B

S−
−−
−−
−>

varying c(weight of KEGG pathway profile). a=1.3, b=3.7, d=30.1, e=1.2
varying d(weight of Transitive homology). a=1.3, b=3.7, c=0, e=1.2
varying a(weight of Phenotypic Profile). b=3.7, c=0, d=30.1, e=1.2
varying e(weight of Protein−protein Interaction). a=1.3, b=3.7, c=0, d=30.1
varying b(weight of Microarray). a=1.3, c=0, d=30.1, e=1.2

Fig. 2. Comparing the values of PPV using BS, by varying weights of PPV of different data sources for top 26432 gene pairs. When a particular weight
is varied the other weights are kept constant at the values shown in the figure. The curves obtained with c=0 indicate that KEGG pathway profile is excluded
in the integration process.

of multiple gene clusters. This clustering method, based on K nearest neighbors of each gene, is already used in previous
related investigations of Marcotte et al. [3] and Troyanskaya et al. [9]. As Yeast GO-Slim process annotations was used for
determining the weights of the data sources, 510 different MIPS (October 2005) functional categories are used to evaluate the
biological significance of the clusters generated by our K-BS. One or several predominant functions are then assigned to each
cluster and the target gene (the gene whose K nearest neighbors, using BS as a similarity value, are considered to form the
cluster) by calculating the P-values for different functional categories. The probability (P-value) of observing at least m genes
from a functional category within a cluster of size n is given by

P = 1 −
m−1∑
i=0

(
f
i

)
·
(

N − f
n − i

)
(

N
n

) (8)

where f is the total number of genes within a functional category and N is the total number of genes within the genome
(6131).

III. RESULTS

As Yeast GO-Slim process was used for determining the weights of the data sources, MIPS annotation is now used to
evaluate the performance of BS. Genes and their corresponding proteins are denoted by different symbols or identifiers in
different data sources. data source integration requires that all genes/proteins are denoted according to a common naming
scheme. We mapped genes from different resources to their MIPS identifier. Genes/proteins that could not be mapped to their
MIPS identifier are eliminated. Our gold standard PPV of top gene pairs is now changed and determined from KEGG pathway
profiles, which provides 26432 gene pairs with constant PPV of .8874, using top level classification of MIPS annotation. In
this section, first we present the comparisons of our method with Lee et al.’s [11] probabilistic network and individual data
sources in Section III-A. Influence of number of classified genes on the proposed scoring framework is demonstrated in Section
III-B. In Section III-C various paremeters involved in the clustering method and the biological significance of some clusters
are addressed. Finally, the performance of BS and some comparisons based on independent training (estimating weight factors)
and test set with null intersection are presented in Section III-D.

IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING 8

A. Comparative Performance of Methods and Data Sources

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

x 10
4

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of top relations−−−−−>

PP
V−

−−
−−
−>

Transitive homology
KEGG Pathway profile
Lee et al. Prob. Network
Microarray
Phenotypic Profile
Biological Score
Prob. Network using same data sources

Fig. 3. Comparison between the Biological Score (BS), Lee et al.’s Probabilistic Network, and individual data source in terms of PPV versus the number
of top gene pairs. While, the available annotations (using vector V (g) in Eq. 5) from Yeast GO-Slim process is used to train the weighting factors in BS and
‘Probabilistic Network using same data sources’, the available annotations from MIPS are used to evaluate (using PPV) the gene pairs of all the methods
and data sources.

In order to demonstrate the power of data source integration, we compare the PPV of gene pairs identified by the BS
(Proposed scoring framework for data source integration) with those identified by the individual data sources. Since the
proposed method (BS) uses GO annotations for adapting its weights, it is not used for performing the comparisons. Rather,
the MIPS annotation of classified genes is used (Fig. 3). We sorted the similarity values computed from Biological Score
(BS), phenotypic profiles, gene expression, KEGG profiles, and protein similarity from transitive homology in descending
order, and drew a curve for top gene pairs verses PPV from the sorted data for each form of data source. In contrast, PPV
for protein-protein interactions has a constant value of 0.69 and not shown in Fig.3. We found that the curve of BS is above
the other curves. Moreover, the top 26432 gene pairs has an PPV greater than the gold standard KEGG pathway profiles.
The gene pairs are also reasonably distinct from gene pairs of KEGG pathway profiles. It demonstrates that the proposed
Biological Score achieved higher PPV by combining similarities from multiple sources. Similarities supported by diverse
forms of sources are more likely to be correct. This highlights the merit of data source integration. Figure 3 also compares
the performance of BS and ‘final log likelihood scores’ of Lee et al.’s probabilistic network (downloaded from the website
mentioned in [27]) in terms of PPV with MIPS annotation. The curve of Lee et al.’s probabilistic network is drawn from
top 34,000 gene pairs, as mentioned in [11]. For a direct comparison between our method and the probabilistic network, we
implemented the probabilistic network as described in Lee et al. using the same datasources as in Biological Score (BS)
and plotted the respective curve in Fig. 3. From the figure it is clear that the top gene pairs identified in this investigation
is better than any other existing network or data sources. The above statement is true not only for gold standard 24632
gene pairs but also for top 80000 gene pairs which can be used further for any gene network or gene function prediction.
We found that beyond top 80000 gene pairs the performance of our method is gradually converging to the performance of
probabilistic network (with same data sources) but, it does not hampers the superior performance of our method as only a
fraction of top gene pairs are generally used [11] for gene function or network prediction. It is also evident from the results
that the choice of data sources is a very important factor in data source integration. For example, protein homology and KEGG
profile individually performs better than probabilistic network and considered as two important data sources in the proposed
BS. The top 1, 00, 000 gene pairs predicted by our method with PPV above 0.755 (not shown in the data) are available
in http://www.isical.ac.in/˜scc/Bioinformatics/AdS/toprelation.txt in tabular (tab delimited) form. The PPV computed from
individual data source are also shown in the file.

IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING 9

B. Influence of Number of Classified Genes on Functional Annotation based Weighting

10 20 30 40 50 60 70 80 90
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Percentage of classified genes in SGD−−−−−>

PP
V
−−
−−
−−

>

Fig. 4. Variation of PPV , using BS, with nine different percentages of classified genes.

Here we study how the increase in the number of classified genes in Yeast GO-Slim affects the PPV for the classified
genes in MIPS for top 26432 gene pairs using BS. We found that even with 20% of classified genes the estimated values of a,
b, c, d, and e, in maximizing PPV , differs by an amount of 1 than the estimated values with 90% of classified genes. Hence,
the value of PPV also varies by an amount of 0.02 to 0.03 with classified genes ranging from 20% to 90%. Fig. 4 shows
that the percentage of classified genes clearly has a limited contribution to the accuracy (PPV) of the BS. Thus BS may also
be successfully used for organisms where the number of classified genes is as low as 20%.

C. Gene Function Prediction based on Clustering Results

Genes (open reading frames) are considered to be linked if they are among the 10 closest neighbors within a given distance
or similarity cut-off [3]. The biological function for each gene is predicted from the cluster consisting the top 10 neighbors
of that gene by selecting K to be at most 10 and BS cut-off value of 0.77. Above this cut-off value the gold standard PPV
of 0.8874 is achieved for 36033 gene pairs using the MIPS October 2005 classification. We found several clusters to be
significantly enriched with genes of a similar function. Clusters with P-values greater than 10−5 are not reported.

To predict a genes function from it’s neighbor genes we use the following steps:
Step 1) 2507 clusters are identified with at-least three or more members by selecting K = 10 and with BS gold standard cut-off

value 0.77.
Step 2) Out of these clusters, 1915 clusters are identified with functional enrichment in one or more categories and P-values less

than 10−5.
Step 3) From functionally enriched clusters we predict the functions of 1855 classified and 60 unclassified genes by assigning

the function related with the smallest P -value. This ignores the possibility that a gene may be assigned more than one
highly significant function, but in practice resulted in more accurate predictions than if multiple functions are allowed
per cluster.

The functions of 1855 classified genes are predicted with 95.16 PPV . In general we can say that the possibility of 60 unclassi-
fied Yeast genes to match with the predicted functions is 95.16%. The functional enrichment, in one or more categories, for clus-
ters intended for 60 unclassified yeast genes are available in tabular form (tab delimited file) at http://www.isical.ac.in/˜scc/Bioin-
formatics/AdS/unclassifiedprediction.xls. The function with the smallest P -value in the table represents the predicted function
for the unclassified gene, and the three values in the parenthesis denote the function related P-value, function related no.
of genes in the cluster, and the function related no. of genes in the genome, respectively. The table also includes all the
genes within each cluster, the PPV (between target gene and the neighbor gene) arising from various data sources, and
the BS values. A table with similar format, containing the predicted functions of 1855 classified yeast genes is available at
http://www.isical.ac.in/˜scc/Bioinformatics/AdS/classifiedprediction.xls.

Out of 60 unclassified genes, YEL041W and YDR459C are now (April 2007) classified in MIPS, and our function predictions
for these two genes are in agreement with present MIPS classification. YEL041w and its four neighbors YJR049C, YPL188W,
YDR226W, and YER170W form a cluster. From the functional enrichment of the cluster we predict that YEL041w is related
with the category ‘phosphate metabolism’ as the four remaining genes belong to this category. The prediction is right according
to MIPS (April 2007) classification with p-value 1.42×10−6. We further manually analyze the cluster and predict that the gene
YEL041w may be related with category ‘metabolism of vitamins, cofactors, and prosthetic groups’ and ‘homeostasis’ since

IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING 10

it’s two top neighbor genes YJR049C and YPL188W is related with these categories. While the prediction of the category
‘metabolism of vitamins, cofactors, and prosthetic groups’ is a correct (MIPS 2007) one, the prediction ‘homeostasis’, may be
a novel one for YEL041w. Moreover, according to MIPS, YEL041w has the highest similarity to YJR049C, which is related
to homeostasis of metal ions (Na, K, Ca etc.).

The cluster containing gene YDR459C and its ten neighbor genes, YOL003C, YNL326C, YLR246W, YPR193C, YIR042C,
YMR127C, YNL035C, YBL052C, YDR126W and YPR051W shows functional enrichment in categories ‘protein modification’
(8 out of 11, P -value 1.16×10−6), ‘modification with fatty acids (e.g. myristylation, palmitylation, farnesylation)’ (4 out of 11,
P -value 2.3×10−7) and ‘modification by acetylation, deacetylation’ (4 out of 11, P -value 4.4×10−6). We correctly predict that
YDR459C is related to ‘modification with fatty acids’. The hierarchical nature of MIPS annotation automatically ensures that
YDR459C is related to ‘protein modification’, which is placed at one level higher than ‘modification with fatty acids’. Although
the remaining function, ‘modification by acetylation, deacetylation’, is also significant in terms of P -value, YDR459C is not
related with this function and our results are in agreement with our approach of considering the function involving the lowest
P -value. The cluster also contains three unclassified (MIPS 2007 classification) genes YDR126W, YIR042C, and YNL035C.
Although the cluster is not intended to predict the function of these three genes we can assume that these genes may be related
with the function ‘protein modification’.

TABLE I

TOP 12 FUNCTION PREDICTIONS OF UNCLASSIFIED GENE AT BS CUT-OFF VALUE OF 0.77

Unclassified Functional P-value Genes Genes
Gene category within within

cluster category
YIL080W ABC transporters 2.2204e-16 8 28
YLR057W modification with sugar residues 2.2871e-14 8 67
YHR218W DNA topology 0 9 52
YHR219W DNA topology 0 10 52
YIL170W C-compound and carbohydrate transport 1.3656e-14 8 63
YDR441C purin nucleotide/nucleoside/nucleobase metabolism 6.7724e-15 8 58
YCL074W TRANSPOSABLE ELEMENTS, VIRAL AND PLASMID PROTEINS 3.3307e-16 8 34
YBL112C DNA topology 0 10 52
YLR464W DNA topology 2.6645e-15 8 52
YMR010W modification with sugar residues (e.g. glycosylation, deglycosylation) 0 9 67
YIL067C vesicle fusion 2.2204e-16 9 32

YHR049W metabolism of secondary products derived from glycine, L-serine 3.3307e-16 7 19
and L-alanine

Our top predictions consist the function of 12 unclassified (MIPS 2007) and 417 classified genes at BS cut-off value 0.77,
and P-value cut-off 1 × 10−13. At these cut-off values, the functions of the classified genes are predicted with 98.20 PPV .
Table I summarizes the top 12 predicted functions for 12 unclassified genes. For each of the predicted functions, the related
p-values, no. of related genes in the cluster and the genome, is also shown in the table. Each of the clusters contain 11
genes and they are available in the table representing 60 clusters for function prediction of unclassified genes. since four of
the 12 clusters show functional enrichment in a single category of ‘DNA topology’, we analyze these clusters manually. We
observe that 15 classified (YBL113c, YDR545w, YEL077c, YER190w, YGR296w, YHL050c, YIL177c, YJL225c, YLL066c,
YLL067c, YLR466w, YLR467w, YNL339c, YPL283c, and YPR204w), 4 unclassified (YHR218W, YHR219W, YBL112C,
and YLR464W) and 2 recently deleted (YEL076C and YPR203W) genes are distributed in these clusters with 80% genes
in common. We further perform clustering with K-BS by selecting K = 20 to find if these four clusters merge to form a
single cluster. After clustering, all the 21 genes are found in the same cluster, which shows functional enrichment in categories
‘CELL CYCLE AND DNA PROCESSING’ (15 out of 19, P -value 1.53× 10−10), ‘DNA processing’ (15 out of 19, P -value
7.02×10−15) and ’DNA topology’ (15 out of 19, P -value 2.38×10−30). Our analysis predicts that the four unclassified genes
are very likely to be involved in the above mentioned processes. On examination of the literature for 4 unclassified genes, we
find that their involvement in DNA processing and DNA topology is likely due to their relation to helicase-proteins [16], [28].
These proteins play important roles in various cellular processes including DNA replication, DNA repair, RNA processing,
chromosomal segregation, and maintenance of chromosome stability. It has been well known that the amino acid sequences
of these proteins contain several conserved motifs, and that the open reading frames (ORFs) which encode helicase-related
proteins make up several gene families [28]. While YHR218W encodes helicase-like protein within the telomeric Y’ element,
YHR219W encodes protein that is similar to helicases and contains telomeric short Y’ element [16]. YBL112C and YLR464W
also contain helicase-encoding repetitive sequence and lies within TEL02L (subtelomeric region next to the telomeric repeats)
and TEL12R, respectively.

D. Evaluation Based on Independent Training and Test Sets

The performance of the proposed integration method relies critically on Yeast GO-Slim process annotations in order to
determine the weights of the data sources in the training process and its evaluation depends on MIPS annotation in the test

IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING 11

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
4

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of top relations−−−−−>

PP
V−

−−
−−
−>

BS (Biological Score)
Transitive homology
Lee et al. Probabilistic Network
Microarray
Phenotypic Profile
Prob. Network using same data sources

Fig. 5. Comparison between the Biological Score (BS), Lee et al.’s Probabilistic Network, and individual data source in terms of PPV versus the number
of top gene pairs. The available annotations (using vector V (g) in Eq. 5) from Yeast GO-Slim process and MIPS are first merged for all the genes, and then
the genes (with annotation vectors) are randomly splited into disjoint training and test sets. While, the training set is used to determine the weighting factors
in BS and ‘Probabilistic Network using same data sources’, the test set is used to evaluate (using PPV) the gene pairs of all the methods and data sources.

process. But to perform a fair evaluation, the training and test set should be independent with null intersection. In this regard,
we also experimented with an alternative method based on cross-validation. First, we merged the available annotations (using
vector V (g) in Eq. 5) from Yeast GO-Slim process and MIPS for all the genes, and then split the genes (with annotation
vectors) into independent training and test sets. Because data are integrated using weights derived only from the training set,
the performances measured on the remaining test benchmark are expected to be free from circular logic and memorization
of the annotation set during the training procedure. Moreover, the KEGG pathway profile dataset is now excluded from the
datasource integration procedure as pathway information is a bit redundant with functional annotations available in MIPS and
Yeast GO-Slim process.

We randomly separated the set of 6,072 genes into 2 disjoint training and test subsets of 3,036 genes each. All links among
genes within the same training subset are calculated and then used for training the weights. Similarly, all links among genes
within the same test subset are calculated, with neither links nor genes shared between the training and test sets. The calculation
of weights for data source integration and all other steps prior to the final assessment of BS, are performed using only the
training set. The final assessment is performed on the independent test set. The cross-validation procedure is repeated 10 times
and the performance of BS is evaluated without using KEGG pathway profile as a data source.

Fig. 5 shows the curves comparing BS and individual data sources in terms of PPV for top gene pairs, in one of the
cross-validation procedures. Similar curves are obtained when the cross-validation procedure is repeated. The curves show that
BS performs better than Lee et al.’s Probabilistic Network and individual data source. In clustering solutions, using K-BS and
repeteting cross-validation procedure, on average 800 clusters are identified with functional enrichment in one or more categories
by selecting K to be at most 10, BS cut-off value 0.77, and P-values less than 10−5. From functionally enriched clusters, on
average we predict the functions of 500 classified genes with 96.2 PPV and 300 unclassified genes by assigning the function
related with the smallest P -value. In one of the cross-validation process (out of 10 repetitions), functions of 516 classified
yeast genes are predicted with 97.1 PPV from 516 clusters. For the purpose of illustration, the predicted functions of 516
classified yeast genes are uploaded at http://www.isical.ac.in/˜scc/Bioinformatics/AdS/classifiedpredictionreview.xls. Although,
the KEGG pathway profile dataset is now excluded in the data source integration procedure using Eq. 7, the PPV s are higher
(96.2) than that reported including KEGG pathway profile dataset (95.16) because, a part of Yeast GO-Slim process annotations,
which on average have more genes in each functional process than pure MIPS annotations, are now included in the cluster
evaluation procedure.

IV. CONCLUSION

In this study, we proposed a framework for data source integration that combines information from different sources to predict
gene function. We employed functional annotation based weighting of data sources through annotations of classified genes to
predict gene pairs for yeast from five data sources, namely, phenotypic profiles, gene expression data, KEGG profiles, protein-
protein interaction and protein sequence similarity through transitive homologues. Functional categories of 60 unclassified

IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING 12

(MIPS October 2005) Yeast genes and 1855 classified genes are predicted with 95.16 PPV . Evaluation on the predicted gene
pairs confirmed the validity and potential value of the proposed framework for gene function prediction.

Although a neighbor based clustering method needs a user defined neighbor number, from this investigation we find that K-BS
is a highly accurate and efficient gene function annotation tool. The system integrates heterogeneous biological information in
a functional annotation based weighting framework, leading to more biologically accurate gene groupings, which can be used
for gene function prediction. The flexibility of the system allows for easy inclusion of other data sources by first benchmarking
them, and then adaptively estimating the individual weights. Furthermore, we plan to examine our proposed framework on a
larger test-bed by including similarities arising from gene-fusion and gene-order conservation based methods.

ACKNOWLEDGEMENT

We would like to acknowledge Dr. Martin Mnsterktter, CYGD coordinator at MIPS, for fixing the bugs in downloading
functional categories, Dr. Maria C. Costanzo, Senior Scientific Curator of Saccharomyces Genome Database, for mapping the
gene names from Yeast GO-Slim process annotations to ORFs and anonymous reviewers for their suggestions in improving
the quality of research. Support of the Dept. of Science and Technology, Govt. of India to the Center for Soft Computing
Research through its IRHPA scheme is acknowledged.

REFERENCES

[1] J. A. Brown, G. Sherlock, C. L. Myers, N. M. Burrows, C. Deng, H. I. Wu, K. E. McCann, O. G. Troyanskaya, and J. M. Brown, “Global analysis of
gene function in yeast by quantitative phenotypic profiling,” Molecular System Biology, vol. 2, no. 2006.0001, pp. 1–9, 2006.

[2] M. B. Eisen, P. T. Spellman, P. O. Brown, and D. Botstein, “Cluster analysis and display of genome-wide expression patterns,” Proc. Natl. Acad. Sci.
USA, vol. 95, pp. 14863–14867, 1998.

[3] E. M. Marcotte, M. Pellegrini, M. J. Thompson, T. O. Yeates, and D. Eisenberg, “A combined algorithm for genome-wide prediction of protein function,”
Nature, vol. 402, pp. 83–86, 1999.

[4] M. Kanehisa, S. Goto, M. Hattori, K. F. Aoki-Kinoshita, M. Itoh, S. Kawashima, T. Katayama, M. Araki, and M. Hirakawa, “From genomics to chemical
genomics: new developments in kegg,” Nucleic Acids Res., vol. 34, pp. D354–D357, 2006.

[5] L Salwinski, C. S. Miller, A. J. Smith, F. K. Pettit J. U. Bowie, and D. Eisenberg, “The database of interacting proteins,” Neuclic Acid Research, vol.
32, pp. 449451, 2004.

[6] T. Reguly, A. Breitkreutz, L. Boucher, B. J. Breitkreutz, G. C. Hon, C. L. Myers, A. Parsons, H. Friesen, R. Oughtred, A. Tong, C. Stark, Y. Ho,
D. Botstein, B. Andrews, C. Boone, O. G. Troyanskya, T. Ideker, K. Dolinski, N. N. Batada, and M. Tyers, “Comprehensive curation and analysis of
global interaction networks in saccharomyces cerevisiae,” Journal of Biology, vol. 5, no. 4, pp. 1–28, 2006.

[7] M. Pellegrini, E. M. Marcotte, M. J. Thompson, D. Eisenberg, and T. O. Yeates, “Assigning protein functions by comparative genome analysis: protein
phylogenetic profiles,” Proc. Natl. Acad. Sci. USA, vol. 96, pp. 4285–4288, 1999.

[8] E. M. Marcotte, M. Pellegrini, H. L. Ng, D. W. Rice, T. O. Yeates, and D. Eisenberg, “Detecting protein function and protein-protein interactions from
genome sequences,” Science, vol. 285, pp. 751–753, 1999.

[9] O. G. Troyanskaya, K. Dolinski, A. B. Owen, R. B. Altman, and D. Botstein, “A bayesian framework for combining heterogeneous data sources for
gene function prediction (in saccharomyces cerevisiae),” Proc. Natl. Acad. Sci. USA, vol. 100, no. 14, pp. 8348–8353, 2003.

[10] C. V. Mering, R. Krause, B. Snel, M. Cornell, S. G. Oliver, S. Fields, and P. Bork, “Comparative assessment of large-scale data sets of protein-protein
interactions,” Nature, vol. 417, pp. 399–403, 2002.

[11] I. Lee, S. V. Date, A. T. Adai, and E. M. Marcotte, “A probabilistic functional network of yeast genes,” Science, vol. 306, pp. 1555–1558, 2004.
[12] V. Spirin and L. A. Mirny, “Protein complexes and functional modules in molecular networks,” Proc. Natl Acad. Sci. USA, vol. 100, no. 21, pp.

1212312128, 2003.
[13] DeLisi C Yanai I., “The society of genes: networks of functional links between genes from comparative genomics,” Genome Biology, vol. 3, no. 11,

pp. 1–64, 2002.
[14] Munich Information for Protein Sequences, “http://www.mips.com,” .
[15] W. C. Barker et al., “The protein information resource (pir),” Nucleic Acids Research, vol. 28, no. 1, pp. 41–44, 2000.
[16] S. S. Dwight, M. A. Harris, K. Dolinski, C. A. Ball, G. Binkley, K. R. Christie, D. G. Fisk, L. Issel-Tarver, M. Schroeder, G. Sherlock, A. Sethuraman,

S. Weng, D. Botstein, and J. M. Cherry, “Saccharomyces genome database (sgd) provides secondary gene annotation using the gene ontology (go),”
Nucleic Acids Research, vol. 30, no. 1, pp. 69–72, 2002.

[17] T. H. B, B. Dysvik, and I. Jonassen, “Lsimpute: accurate estimation of missing values in microarray data with least squares methods,” Nucleic Acids
Research, vol. 32, no. 3: e34, pp. online, 2004.

[18] Website, “http://rana.lbl.gov/EisenData.htm,” .
[19] G. Sherlock et al., “The stanford microarray database,” Nucleic Acids Research, vol. 29, no. 1, pp. 152–155, 2001.
[20] S. F. Altschul, T. L. Madden, A. A. Schffer, J. Zhang, Z. Zhang, W. Miller, and D. J. Lipman, “Gapped blast and psi-blast: a new generation of protein

database search programs,” Nucleic Acids Research, vol. 25, no. 17, pp. 3389–3402, 1997.
[21] J. Park, K. Karplus, C. Barrett, R. Hughey, D. Haussler, T. Hubbard, and C. Chothia, “Sequence comparisons using multiple sequences detect three

times as many remote homologues as pairwise methods,” J Mol Biol, vol. 284, pp. 1201–1210, 1998.
[22] H. Xie, A. Wasserman, Z. Levine, A. Novik, V. Grebinskiy, Avi Shoshan, and Liat Mintz, “Large-scale protein annotation through gene ontology,”

Genome Research, vol. 12, pp. 785–794, 2002.
[23] Q. Ma, G. W. Chirn, R. Cai, J. D. Szustakowski, and N. Nirmala, “Clustering protein sequences with a novel metric transformed from sequence similarity

scores and sequence alignments with neural networks,” BMC Bioinformatics, vol. 6, no. 242, 2005.
[24] A. Bairoch, R. Apweiler, C. H. Wu, W. C. Barker, B. Boeckmann, S. Ferro, E. Gasteiger, H. Huang, R. Lopez, M. Magrane, M. J. Martin, D. A. Natale,

C. O’Donovan, N. Redaschi, and L. S. Yeh, “The universal protein resource (uniprot),” Nucleic Acids Research, vol. 33, pp. 154–159, 2005.
[25] P. Pipenbacher, A. Schliep, S. Schneckener, A. Schonhuth, D. Schomburg, and R. Schrader, “Proclust: improved clustering of protein sequences with

an extended graph-based approach,” Bioinformatics, vol. 18, no. 2, pp. S182S191, 2002.
[26] D. Wettschereck, D. W. Aha, and T. Mohori, “A review and empirical evaluation of feature weighting methods for a class of lazy learning algorithms,”

Artificial Intelligence Review, vol. 11, no. 1-5, pp. 273–314, 1997.
[27] I. Lee, R. Narayanaswamy, and E. M. Marcotte, Yeast Gene Analysis, chapter Bioinformatic prediction of yeast gene function, Elsevier Press, Amsterdam,

2006.
[28] A. Shiratori, T. Shibata, M. Arisawa, F. Hanaoka, Y. Murakami, and T. Eki, “Systematic identification, classification, and characterization of the open

reading frames which encode novel helicase-related proteins in saccharomyces cerevisiae by gene disruption and northern analysis,” Yeast, vol. 15, no.
3, pp. 219–253, 1999.

Bioinformatics in Neurocomputing Framework

Shubhra Sankar Ray, Sanghamitra Bandyopadhyay, Pabitra Mitra and Sankar K. Pal
Machine Intelligence Unit, Indian Statistical Institute, Kolkata 700108

Email: {shubhra_r,sanghami,pabitra_r,sankar}@isical.ac.in

CODEC-04, pp. 94, Januray 1-3, 2004, kolkata

Abstract - Bioinformatics is an interdisciplinary
research area of biology and computer science. This
article provides an overview of neural network
applications in different bioinformatics tasks. The
relevance of intelligent systems and neural networks
to these problems is first mentioned. Different tasks
like gene sequence analysis, gene finding, protein
structure prediction and analysis, microarray
analysis and gene regulatory network analysis are
described along with some classical approaches.
Different neural network based algorithms to
address the aforesaid tasks are then presented.
Finally some directions for future research are
provided.

Keywords: biological data mining, gene sequence
analysis, protein structure, microarray, gene
regulatory network, multiplayer perceptron, self
organizing map

I. INTRODUCTION

Over the past few decades, major advances in
the field of molecular biology, coupled with
advances in genomic technologies, have led to an
explosive growth in the biological information
generated by the scientific community. This deluge
of genomic information has, in turn, led to an
absolute requirement for computerized databases
to store, organize and index the data, and for
specialized tools to view and analyze the data.
Bioinformatics can be viewed as the use of

computational methods to make biological
discoveries [1]. It is an interdisciplinary field
involving biology, computer science, mathematics
and statistics to analyze biological sequence data,
genome content & arrangement, and to predict the
function and structure of macromolecules. The
ultimate goal of the field is to enable the discovery
of new biological insights as well as to create a
global perspective from which unifying principles
in biology can be derived. There are three
important sub-disciplines within bioinformatics:
a) The development of new algorithms and

models to assess different relationships
among the members of a large biological data
set;

b) The analysis and interpretation of various
types of data including nucleotide and amino

acid sequences, protein domains, and protein
structures; and

c) The development and implementation of
tools that enable efficient access and
management of different types of information
This article provides a survey of the various

neural network based techniques that have been
developed over the past few years for different
bioinformatics tasks. First we describe the primary
bioinformatics tasks along with their biological
basis. Next different neural network based
algorithms available to address them are explained.
Finally, some conclusions and future research
directions are presented.

II. BIOINFORMATICS TASKS

The different biological problems studied
within the scope of bioinformatics can be broadly
classified into two categories: genomics and
proteomics which include genes, proteins, and
amino acids. We describe below different tasks
involved in their analysis along with their utility.

A. Gene Sequence Analysis

The evolutionary basis of sequence
alignment is based on the principles of similarity
and homology [3]. Similarity is a quantitative
measure of the fraction of two genes which are
identical in terms of observable quantities.
Homology is the conclusion drawn from data that
two genes share a common evolutionary history;
no metric is associated with this. The tasks of
sequence analysis are-
Sequence Alignment: An alignment is a mutual
arrangement of two or more sequences, which
exhibits where the sequences are similar, and
where they differ. An optimal alignment is one that
exhibits the most correspondences and the least
differences. It is the alignment with the highest
score but may or may not be biologically
meaningful. Basically there are two types of
alignment methods, global alignment and local
alignment. Global alignment [4] maximizes the
number of matches between the sequences along
the entire length of the sequence. Local alignment
[5] gives a highest scoring to local match between
two sequences.

Pattern Searching: Pattern searching is search for
a nucleic pattern in a nucleic acid sequence, in a
set of sequences or in a databank. (e.g.,
INFOBIOGEN) [6]. It is the potential for
uncovering evolutionary relationships and patterns
between different forms of life. With the aid of
nucleotide and protein sequences, it should be
possible to find the ancestral ties between different
organisms. So far, experience indicates that closely
related organisms have similar sequences and that
more distantly related organisms have more
dissimilar sequences. Proteins that show a
significant sequence conservation indicating a
clear evolutionary relationship are said to be from
the same protein family. By studying protein folds
(distinct protein building blocks) and families,
scientists are able to reconstruct the evolutionary
relationship between two species and to estimate
the time of divergence between two organisms
since they last shared a common ancestor.
Gene Finding: In general DNA strand consists of a
large sequence of nucleotides, or bases. For
example there are more than 3 billions bases in
human DNA sequences. Not all portions of the
DNA sequences are coding and coding zones
indicate that they are a template for a protein. In
the human genome only 3%-5% of the sequence
are coding, i.e., they constitute the gene. Due to the
size of the database, manual searching of genes,
which code for proteins, is not practical. Therefore
automatic identification of the genes from the large
DNA sequences is an important problem in
bioinformatics [7].

B. Protein Analysis

Proteins are polypeptides, formed within
cells as a linear chain of amino acids [8]. Within
and outside of cells, proteins serve a myriad of
functions, including structural roles (cytoskeleton),
as catalysts (enzymes), transporter to ferry ions
and molecules across membranes, and hormones to
name just a few. There are twenty different amino
acids that make up essentially all proteins on earth.
Different tasks involved in protein analysis are as
follows:
Multiple Sequence Alignment: Multiple amino acid
sequence alignment techniques [1] are usually
performed to fit one of the following scopes:
(a) determination of the consensus sequence of
several aligned sequences; (b) help in the
prediction of the secondary and tertiary structures
of new sequences; and (c) preliminary step in
molecular evolution analysis using phylogenetic
methods for constructing phylogenetic trees.
 In order to characterize protein
families, one needs to identify shared regions of
homology in a multiple sequence alignment; (this
happens generally when a sequence search

revealed homologies in several sequences) .The
clustering method can do alignments automatically
but are subjected to some restrictions. Manual and
eye validations are necessary in some difficult
cases. The most practical and widely used method
in multiple sequence alignment is the hierarchical
extensions of pairwise alignment methods, where
the principal is that multiple alignments is
achieved by successive application of pairwise
methods.
Protein Motif Search: Protein motif search [7,8]
allows search for a personal protein pattern in a
sequence (personal sequence or entry of Gene
Bank). Proteins are derived from a limited number
of basic building blocks (domains). Evolution has
shuffled these modules giving rise to a diverse
repertoire of protein sequences, as a result of it
proteins can share a global or local relationship.
Protein motif search is a technique for searching
sequence databases to uncover common
domains/motifs of biological significance that
categorize a protein into a family.
Structural Genomics: Structural genomics is the
prediction of 3-dimensional structure of a protein
from the primary amino acid sequence [9]. This is
one of the most challenging tasks in
bioinformatics..

The four levels of protein structure
(Figure 1) are (a) Primary structure is the
sequence of amino acids that compose the protein,
(b) different regions of the sequence form local
secondary structures, such as alpha helices and
beta strands, (c) Tertiary structure is formed by
packing secondary structural elements into one or
several compact globular units called domains, and
(d) Final protein may contain several polypeptide
chains arranged in a quaternary structure.

Figure 1: Different levels of protein structures

Sequence similarity methods predict

secondary and tertiary structure based on
homology to know proteins. Secondary structure
predictions methods include Chou-Fasman [9],
GOR, neural network, and nearest neighbor
methods. Tertiary structure prediction methods
include energy minimization, molecular dynamics,
and stochastic searches of conformational space.

C. Microarrays

Microarray technology [10] makes use of
the sequence resources created by the genome
projects and other sequencing efforts to answer the

question, what genes are expressed in a particular
cell type of an organism, at a particular time, under
particular conditions. Gene expression is the
process by which a gene's coded information is
converted into the structures present and operating
in the cell. Expressed genes include those that are
transcribed into mRNA and then translated into
protein and those that are transcribed into RNA but
not translated into protein (e.g., transfer and
ribosomal RNAs). For instance, they allow
comparison of gene expression between normal
and diseased (e.g., cancerous) cells. There are
several names for this technology - DNA
microarrays, DNA arrays, DNA chips, gene chips,
others.
 Microarrays exploit the preferential
binding of complementary single-stranded nucleic
acid sequences. A microarray is typically a glass
(or some other material) slide, on to which DNA
molecules are attached at fixed locations (spots).
There may be tens of thousands of spots on an
array, each containing a huge number of identical
DNA molecules (or fragments of identical
molecules), of lengths from twenty to hundreds of
nucleotides. (According to quick napkin
calculations by Wilhelm Ansorge and
Quackenbush in Heidelberg on 4 October, 2001,
the number of DNA molecules in a microarray
spot is 107-108). For gene expression studies, each
of these molecules ideally should identify one gene
or one exon in the genome, however, in practice
this is not always so simple and may not even be
generally possible due to families of similar genes
in a genome. Microarrays that contain all of the
about 6000 genes of the yeast genome have been
available since 1997. The spots are either printed
on the microarrays by a robot, or synthesized by
photo-lithography (similarly as in computer chip
productions) or by ink-jet printing.

 There are different ways how
microarrays can be used to measure the gene
expression levels. One of the most popular
micorarray applications allows to compare gene
expression levels in two different samples, e.g., the
same cell type in a healthy and diseased state.
Conceptually, a gene expression database can be
regarded as consisting of three parts – the gene
expression data matrix, gene annotation and
sample annotation.

 Microarrays are already producing
massive amounts of data. These data, like genome
sequence data, can help us to gain insights into
underlying biological processes only if they are
carefully recorded and stored in databases, where
they can be queried, compared and analyzed by
different computer software programs. In many
respects gene expression databases are inherently

more complex than sequence databases (this does
not mean that developing, maintaining and
curating the sequence databases are any less
challenging).

D. Gene Regulatory Network Analysis
Another important and interesting

question in biology is how gene expression is
switched on and off, i.e., how genes are regulated
[1]. Since almost all cells in a particular organism
have an identical genome, differences in gene
expression and not the genome content are
responsible for cell differentiation (how different
cell types develop from a fertilized egg) during the
life of the organism.
 Gene regulation in eukaryotes, is not
well understood, but there is evidence that an
important role is played by a type of proteins
called transcription factors. The transcription
factors can attach (bind) to specific parts of the
DNA, called transcription factor binding sites (i.e.,
specific, relatively short combinations of A, T, C
or G), which are located in so-called promoter
regions. Specific promoters are associated with
particular genes and are generally not too far from
the respective genes, though some regulatory
effects can be located as far as 30,000 bases away,
which makes the definition of the promoter
difficult.

 Transcription factors control gene
expression by binding the gene's promoter and
either activating (switching on) the gene's
transcription, or repressing it (switching it off).
Transcription factors are gene products
themselves, and therefore in turn can be controlled
by other transcription factors. Transcription factors
can control many genes, and some (probably most)
genes are controlled by combinations of
transcription factors. Feedback loops are possible.
Therefore we can talk about gene regulation
networks. Understanding, describing and
modelling such gene regulation networks are one
of the most challenging problems in functional
genomics. Microarrays and computational methods
are playing a major role in attempts to reverse
engineer gene networks from various observations.
Note that in reality the gene regulation is likely to
be a stochastic and not a deterministic process.
Traditionally molecular biology has followed so-
called reductionist approach mostly concentrating
on a study of a single or very few genes in any
particular research project. With genomes being
sequenced, this is now changing into so-called
systems approach.

III. ARTIFICIAL NEURAL NETWORK (ANN)
ALGORITHMS IN BIOINFORMATICS

Neural network models try to emulate the
biological neural network with electronic circuitry.
NN models have been studied for many years with
the hope of achieving human like performance,
particularly in the field of pattern recognition.
Recently, ANN have found a widespread use for
classification tasks and function approximation in
many fields of medicinal chemistry and
bioinformatics. For these kinds of data analysis
mainly two different types of networks are
employed, "supervised" neural networks (SNN)
and "unsupervised" neural networks (UNN). The
main applications of SNN are function
approximation, classification, pattern recognition
and feature extraction, and prediction tasks. These
networks require a set of molecular compounds
with known activities to model structure-activity
relationships. In an optimization procedure, these
known "target activities" serve as a reference for
SAR modeling. This principle coined the term
"supervised" networks. Correspondingly,
"unsupervised" networks can be applied to
classification and feature extraction tasks even
without prior knowledge of molecular activities or
properties. The following sections describe
different neural network applications to the
bioinformatics tasks described previously.

A. Sequence Analysis

GenTHREADER is a neural network
architecture that predicts similarity between gene
sequences [11]. The effects of sequence alignment
score and pairwise potential are the network
outputs. Using GenTHREADER was successfully
used in the following cases: ORF MG276 from
Mycoplasma genitalium was predicted to share
structure similarity with 1HGX;. MG276 shares a
low sequence similarity (10% sequence identity)
with 1HGX.

A back-propagation neural network can
grossly approximate the score function of the
popular BLAST family of genomic sequence
alignment and scoring tools. The resultant neural
network may provide a processing speed
advantage over the BLAST tool, but may suffer
somewhat in comparison to the accuracy of
BLAST. Further study is necessary to determine
whether a neural network with additional hidden
units or structural complexity could be used to
more closely approximate BLAST. However,
closer approximation may also limit the speed
performance advantages enjoyed by the neural
network approach.

B Protein Analysis

The most successful techniques for
prediction of the protein three-dimensional
structure rely on aligning the sequence of a protein

of unknown structure to a homologue of known
structure. Such methods fail if there is no
homologue in the structural database, or if the
technique for searching the structural database is
unable to identify homologues that are present.

Qian et al [12] used X-ray crystal
structures of globular proteins available at that
time to train a NN to predict the secondary
structure of non-homologous proteins. Since every
residue in a PDB entry can be associated to one of
three secondary structures (HELIX, SHEET or
neither: COIL) the authors were able to design a
NN that had 21 input nodes (one for each residue
including a null residue) and three output nodes
coding for each of the three possible secondary
structure assignments (HELIX, SHEET and
COIL). It was easiest to restrict the input and
output nodes to binary values (1 or 0) when
loading the data onto the network during training.
This explains why three output nodes are needed:
HELIX was coded as 0,0,1 on the three output
nodes; SHEET is coded as 0,1,0 and COIL is
coded as 1,0,0. A similar binary coding scheme
was used for the 20 input nodes for the 20 amino
acids. Since the authors wished to consider a
moving window of seven residues at a time, their
input layer actually contained 20 x 7 nodes plus
one node at each position for a null residue. Over
100 protein structures were used to train this
network. After training, when the NN was queried
with new data, a prediction accuracy of 64% was
obtained.

Rost et al. [13] took advantage of the fact
that a multiple sequence alignment contains more
information about a protein than the primary
sequence alone. Instead of using a single sequence
as input into the network, they used a sequence
profile that resulted from the multiple alignments.
This resulted in a significant improvement in
prediction accuracy to 71.4%. Recently, more
radical changes to the design of NNs including bi-
directional training and the use of the entire protein
sequence as simultaneous input instead of a
shifting window of fixed length has led to
prediction accuracy above 71%.

The task of applying ANNs to the
problem of protein structure prediction requires a
certain number of input “nodes" and connect each
one to every node in a hidden layer. Each node in
the hidden layer is then connected to every node in
the final output layer. The connection strength
between each and every pair of nodes is initially
assigned a random value and is then modified by
the program itself during the training process. Each
node will "decide" to send a signal to the nodes it
is connected to based on evaluating its transfer
function after all of its inputs and connection
weights have been summed. Training proceeds by

holding particular data (say from an entry in the
Protein Data Bank) constant onto both the input
and output nodes and iterating the network in a
process that modifies the connection weights until
the changes made to them approach zero. When
such convergence is reached, the network is ready
to receive new experimental data. Now the
connection weights are not changed and the values
of the hidden and output nodes are calculated.
Selection of unbiased and normalized training
data, however, is probably just as important as the
network architecture in the design of a successful
NN.

The prediction of protein secondary
structure by use of carefully structured neural
networks and multiple sequence alignments have
been investigated by Riis and Krogh[14]. Separate
networks are used for predicting the three
secondary structures ff-helix, fi-strand and coil.
The networks are designed using a priori
knowledge of amino acid properties withrespect to
the secondary structure and of the characteristic
periodicity in ff-helices. Since these single-
structure networks all have less than 600
adjustable weights over-fitting is avoided. To
obtain a three-state prediction of ff-helix, fi-strand
or coil, ensembles of single-structure networks are
combined with another neural network. This
method gives an overall prediction accuracy of
66.3% when using seven-fold cross-validation on a
database of 126 non-homologous globular
proteins. Applying the method to multiple
sequence alignments of homologous proteins
increases the prediction accuracy significantly to
71.3% [14].

C. Microarray

Clustering is commonly used in
microarray experiments to identify groups of genes
that share similar expression. Genes that are
similarly expressed are often co-regulated and
involved in the same cellular processes. Therefore,
clustering suggests functional relationships
between groups of genes. It may also help in
identifying promoter sequence elements that are
shared among genes. In addition, clustering can be
used to analyze the effects of specific changes in
experimental conditions and may reveal the full
cellular responses triggered by those conditions.

Bayesian neural network is used with
structural learning with forgetting for searching for
optimal network size and structure for microarray
data in order to capture the structural information
of gene expressions [15,16]. The process of
Bayesian learning starts with a Feed forward
Neural Network (FFNN) and prior distribution for
the network parameters. The prior distribution
gives initial beliefs about the parameters before

any data are observed. After new data are
observed, the prior distribution is updated to the
posterior distribution using Bayes rules. Multi-
Layer Perceptron (MLP) is mainly considered as
the network structure for Bayesian learning. Since
the correlated data may include high levels of
noise, efficient regularization techniques are
required to improve the generalization
performance. This involves network complexity
adjustment and performance function
modification. To do the latter, instead of the sum
of squared error (SSE) on the training set, a cost
function is automatically adjusted. PLANN
(Plausible neural network) is another universal
data analysis tool based upon artificial neural
networks and is capable of plausible inference and
incremental learning [17]. This tool has been
applied to research data from molecular biological
systems through the simultaneous analysis of gene
expression data and other types of biological
information.

D. Gene Regulatory Network

A novel clustering technique used for
identifying gene regulatory networks is the
adaptive double self-organizing map (ADSOM)
[18]. It has a flexible topology and performs
clustering and cluster visualization simultaneously,
thereby requiring no a-priori knowledge about the
number of clusters. ADSOM is developed based on
a recently introduced technique known as double
self-organizing map (DSOM). DSOM combines
features of the popular self-organizing map (SOM)
with two-dimensional position vectors, which
serve as a visualization tool to decide how many
clusters are needed. Although DSOM addresses the
problem of identifying unknown number of
clusters, its free parameters are difficult to control
to guarantee correct results and convergence.
ADSOM updates its free parameters during
training and it allows convergence of its position
vectors to a fairly consistent number of clusters
provided that its initial number of nodes is greater
than the expected number of clusters. The number
of clusters can be identified by visually counting
the clusters formed by the position vectors after
training. The reliance of ADSOM in identifying
the number of clusters is proven by applying it to
publicly available gene expression data from
multiple biological systems such as yeast, human,
and mouse. ADSOM's performance in detecting
number of clusters is compared with a model-based
clustering method. It may be noted that gene
regulatory network analysis is a very recent
research area, and neural network applications to it
are scarce.

IV. CONCLUSION AND SCOPE OF FUTURE
RESEARCH

The rationale for applying computational
approaches to facilitate the understanding of
various biological processes includes:
• A more global perspective in experimental

design; and
• The ability to capitalize on the emerging

technology of database-mining - the process
by which testable hypotheses are generated
regarding the function or structure of a gene or
protein of interest by identifying similar
sequences in better characterized organisms.
Neural networks appear to be a very powerful

artificial intelligence (AI) paradigm to handle these
issues [19]. Other soft computing tools, like fuzzy
set theory and genetic algorithms, integrated with
ANN may also be based on the principles of Case
Based Reasoning [20].

Even though the current approaches in
biocomputing are very helpful in identifying
patterns and functions of proteins and genes, they
are still far from being perfect. They are not only
time-consuming, requiring Unix workstations to
run on, but might also lead to and assumptions due
to necessary simplifications. It is therefore still
mandatory to use biological reasoning and
common sense in evaluating the results delivered
by a biocomputing program. Also, for evaluation
of the trustworthiness of the output of a program it
is necessary to understand the mathematical /
theoretical background of it to finally come up
with a use- and senseful analysis.

REFERENCES

1. P. Baldi and S. Brunak, Bioinformatics: The Machine
Learning Approach, MIT Press, Cambridge, MA, 1998.

2. R. B. Altman, A. Valencia, S. Miyano and S.
Ranganathan, Challenges for intelligent systems in
biology, IEEE Intelligent Systems, 16(6), pp. 14-20, 2001

3. H. Nash, D. Blair, J. Grefenstette, Proc. 2nd IEEE
International Symposium on Bioinformatics and
Bioengineering (BIBE'01), pp. 89, 2001, Bethesda,
Maryland

4. S. B. Needleman and C. D. Wunsch,, Journal of
Molecular Biology, 48, pp. 443-453, 1970.

5. T. F. Smith and M. S. Waterman, Journal of Molecular
Biology, 147, pp. 195-197, 1981.

6. D. Gautheret, F. Major and R. Cedergren, Pattern
searching/alignment with RNA primary and secondary
structures: an effective descriptor for tRNA, Comp. Appl.
Biosc. 6, pp. 325-331, 1990

7. J. W. Fickett, Finding genes by computer: The state of the
art, Trends in Genetics, 12(8), pp. 316-320, 1996

8. Salzberg, S.L. , Searls, D.B., and Kasif, S. (Eds.)
Computational Methods In Molecular Biology, North
Holland: Elsevier Sciences, 1988

9. P. Chou, and G. Fasmann, “Prediction of the
secondary structure of proteins from their amino acid
sequence”, Advances in Enzymology, 47, pp 45-148,
1978

10. J. Quackenbush, Computational analysis of microarray
data, National Review of Genetics, 2, pp. 418-427,
2001

11. D. T. Jones, “GenTHREADER: An Efficient and
Reliable Protein Fold Recognition.”, Journal of Mol.
Bio., 287, pp.797-815, 1999

12. N. Qian and T. J. Sejnowski, Journal Molecular
Biology, 202, pp. 865-84, 1988

13. B. Rost and C. Sander, Proc Natl Acad Sci U S A 90,
7558-62, 1993

14. S.K. Riis and A. Krogh,“Improving Prediction of
Protein Secondary Structure using Structured Neural
Networks and Multiple Sequence Alignments”, Journal
of Computational Biology, 3, pp. 163-183, 1996

15. S. Liang, S. Fuhrman, and R. Somogyi. REVEAL: A
general reverse engineering algorithm for inference of
genetic network architectures, In Pacific Symposium on
Biocomputing, 3, pp. 18-29, 1998.

16. Bayesian Neural Network for Microarray Data, Yulan
Liang, E Olusegun Georgre, Arpad Kelemen Technical
Report, Department of Mathematical Sciences ,
University of Memphis

17. PLANN Software, PNN Technologies, Pasadena, CA
18. H. Ressom, D. Wang, and P. Natarajan, Clustering

gene expression data using adaptive double self-
organizing map, Physiol. Genomics, 14, pp. 35–46,
2003

19. S. K. Pal, L. Polkowski and A. Skowron, Rough-neuro
Computing: A way of computing with words, Springer,
Berlin, 2003

20. S. K. Pal and S. C. K. Shiu, Foundations of Soft Case
Based Reasoning, John Wiley, NY, 2004

New Operators of Genetic Algorithms for Traveling Salesman Problem
Shubhra Sankar Ray, Sanghamitra Bandyopadhyay and Sankar K. Pal

Machine Intelligence Unit
Indian Statistical Institute

Kolkata 700108
{shubhra_r, sanghami, sankar}@isical.ac.in

Abstract
This paper describes an application of genetic algorithm
to the traveling salesman problem. New knowledge
based multiple inversion operator and a neighborhood
swapping operator are proposed. Experimental results
on different benchmark data sets have been found to
provide superior results as compared to some other
existing methods.
Keywords: knowledge based multiple inversion, order
crossover, knowledge based neighborhood swapping.

1. Introduction

The Traveling Salesman Problem (TSP) is one of the top
ten problems, which has been addressed extensively by
mathematicians and computer scientists. Its importance
stems from the fact there is a plethora of fields in which
it finds applications e.g., DNA fragment assembly,
VLSI design. The classical formulation is stated as:
Given a finite set of cities and the cost of traveling from
city i to city j, if a traveling salesman were to visit each
city exactly once and then return to the home city, which
tour would incur the minimum cost? Formally, the TSP
may be defined as follows [1]:

Let {1, 2, ... n} be the labels of the n cities and C = [ci,j]
be a n×n cost matrix where ci,j denotes the cost of
traveling from city i to city j. The total cost A of a TSP
tour is given by

A(п) = ∑
−

=

1

1

n

i
Ci,,i+1 + C n,1 (1)

The objective is to find a permutation of the n cities
which has minimum cost. The TSP is a very well known
NP-hard problem [2] and therefore any problem
belonging to the NP-class can be formulated as a TSP
problem.

 Over decades, researchers have suggested a multitude
of heuristic algorithms, including genetic algorithms
(GAs) [3], for solving TSP [6]. In this article we
propose some new operators, namely Knowledge Based
Multiple Inversion (KBMI) and Knowledge Based
Neighborhood Swapping (KBNS) along with a

Modified Order Crossover for solving TSP. The
experimental results obtained on TSP benchmarks have
been found to be superior in terms of quality of solution
when compared with other existing GAs [6].

2. Proposed GA for TSP

A new algorithm, called SWAP_GATSP, is described in
this section for solving TSP using elitist GAs with new
operators namely, Knowledge Based Multiple Inversion,
Modified Order Crossover and Knowledge Based
Swapping. The structure of the proposed
SWAP_GATSP is presented below.

begin SWAP_GATSP
 Create initial population of tours randomly.
 while generation_count < k do
 /* k = max. no. of generations.*/
 begin
 KBMI
 Natural selection
 MOC
 KBNS

 Mutation
 Elitism
 Increment generation_count.
end ;
Output the best individual found.

end SWAP_TSP.

2.1. String representation and Cost function

In order to find the shortest tour for a given set of n
cities using GAs, the path representation [6] is
more natural for TSP and has been well studied. In
this encoding, the string representation for a TSP
tour is an array of n integers which is a permutation
of {1, 2, …… n}. The objective is to find a string
with minimum cost. In the following subsections
the new genetic operators employed in the
proposed GA are described.

2.2. Knowledge Based Multiple Inversion

0-7695-2128-2/04 $20.00 (C) 2004 IEEE

 In this process for each string the distance between
every two consecutive cities is calculated from the cost
matrix and the distances are sorted in descending order.
A record is kept so that one can find which distance
corresponds to which two cities.
 Suppose for a string (1 2 3 4 5 6 7 8 9) the sorted
distances are between cities
 (1,2), (5,6), (3,4), (4,5), (9,1), (2,3), (8,9), (6,7) and
(7,8).
Now the substring between the highest two distances
(1,2) and (5,6) is inversed, resulting in the parent (P) and
the child (C) as follows

 P1 = (1 |2 3 4 5 |6 7 8 9)
 and
 C1 = (1 |5 4 3 2 |6 7 8 9)

This inversion procedure is repeated for pairs [(3,4) and
(4,5)], [(9,1) and (2,3)], [(8,9) and (6,7)] and so on for
string with higher no of cities with the condition that a
inversion process will not take place if a substring for a
pair overlaps any other substring of previous all the pair.
Now the substring for the 2nd pair [(3,4) and (4,5)]
overlaps the substring for the pair [(1,2) and (5,6)], so
no inversion of string will take place for the pair [(3,4)
and (4,5)] and the pair will be removed from the list.
The resulting list then becomes
[(1,2) and (5,6)], [(9,1) and (2,3)] and [(8,9) and (6,7)]

The substring for the pair [(9,1) and (2,3)] now overlaps
with the substring for the pair [(1,2) and (5,6)], again no
inversion of string will take place. The resulting list is

[(1,2) and (5,6)] and [(8,9) and (6,7)]
Now for the pairs [(1,2) and (5,6)] and [(8,9) and (6,7)]
there is no overlap between substrings. Therefore the
modified child C2 obtained from C1 are as follows

 C1 = (1 |5 4 3 2 |6 |7 8| 9)
 and
 C2 = (1 5 4 3 2 6 |8 7| 9)

Regarding the number of pairs (say, pa) to be taken for
the 1st iteration and for number of cities within 100, we
have found experimentally that pa’s are 3, 3, 4, 5 and 7
for number of cities 24, 29, 48, 70 and 100 respectively.
These values can be achieved by an equation of the form
 pa=[(n+32)/20]
where n is the number of cities.
This is not kept constant over the generations, rather it is
varied in cycles of appropriate intervals linearly from

1) [pa] to 0.0 for iteration 1 to [z/3]
2) 0.0 to [pa] for iteration [z/3] to [2×z/3]
3) [pa] to 0.0 for iteration [2×z/3] to [z]

where z is the total no. of iterations performed in one
run.

This kind of variation helps in exploring the search
space efficiently and prevents the GA from getting stuck
in the local optima. Note that this is an upgraded version
of Simple Inversion Mutation [6], which is discussed
later. But, it can’t be called mutation operator, as it is a
decisive process not a random one.

2.3. Natural Selection

This operator is designed by a common method of
natural selection in GA called the Roulette Wheel
method [3]. The Roulette Wheel method simply chooses
the strings in a statistical fashion based solely upon their
relative (i.e., percentage) cost or fitness values. So, the
natural selection operator in this GA randomly chooses
strings from the current population with probability
inversely proportional to their cost.

2.4. Crossover

Before presenting our new crossover strategy, a closely
related existing method known as Order based crossover
is described briefly. It has been observed to be one of
the bests in terms of quality and speed, and yet is simple
to implement.

Order Based Crossover (OBC). The order based
crossover operator [7] selects at random several
positions in one of the parent tours, and the order of the
cities in the selected positions of this parent is imposed
on the other parent to produce one child. The other child
is generated in an analogous manner for the other
parent.

Modified Order Crossover. A randomly chosen
crossover point divides the parent strings in left and
right substrings. The right substrings of the parents s1
and s2 are selected. After selection of cities the process
is the same as the order crossover. Only difference is
that instead of selecting random several positions in a
parent tour all the positions to the right of the randomly
chosen crossover point are selected.

For example with the following parents and crossover
point

s1 = (1 2 3 4 |6 9 8 5 7)
and

s2 = (2 1 9 8 |5 6 3 7 4),

after position selection
s1 = (1 2 * * * 9 8 * *)

and
s2 = (2 1 * * * * 3 * 4)

we obtain the generated pair of children as

0-7695-2128-2/04 $20.00 (C) 2004 IEEE

b1 = (1 2 5 6 3 9 8 7 4)
 and
b2 = (2 1 6 9 8 5 3 7 4)

Clearly this method allows only the generation of valid
strings.

2.5. Knowledge Based Neighborhood Swapping

This is a novel deterministic operation injected in the
typical structure of elitist GA. This works on the set of
all strings obtained from crossover. For a string s in the
population a random index value i is generated (1<i<S ,
where S is string length). Now for city (i-1) and city
(i+1) find the city that is nearest to both the cities. Let
its index be j. In this search the cities (i-1) and (i+1) are
excluded. Then in s, swap the city at ith position with
that at jth position. This operation is repeated for all the
strings in the population.

Index j is obtained as follows:
1) calculate the distance from the cost matrix for a
particular city (say c) as
 X(c)= distance((i-1), c) + distance((i+1), c)
2) repeat step 1 for all the cities except city(i-1) and
city(i+1)
3) find the city c for which X(c) is minimum and make
j=c
Since it is a deterministic operator based on the cost
matrix, it helps the stochastic environment of the
working of GA to derive an extra boost in the positive
direction. As this operator is applied only once on every
string for a random city index, not on all the cities in
that string, this operation is not expensive.

2.6. Mutation

For the TSP the simple inversion mutation (SIM) and
insertion mutation (ISM) are the leading performers [6].
Here simple inversion mutation (SIM) is performed on
each string as follows:
This operator selects randomly two cut points in the
string, and it reverses the substring between these two
cut points. For example consider the tour
 (1 2 3 4 5 6 7 8)
and suppose that the first cut point is chosen randomly
between 2nd city and 3rd city, and the second cut point
between the 5th city and the 6th city. Then the resulting
strings will be
 P = (1 2 |3 4 5| 6 7 8)

C = (1 2 |5 4 3| 6 7 8)

The mutation probability it is not kept constant over the
generations. Rather it is varied in cycles of appropriate

intervals [1] (linearly from 0.06 to 0.003 where n is the
number of cities).

3. Time complexity of proposed GA

The time complexity of the algorithm SWAP_GATSP is
given by O(k•N•n) where k is the number of
generations, N is the population size and n is the data
size or the number of cities.

4. Experimental Results

SWAP_GATSP was implemented in Matlab 5.1 on
Pentium-4 (1.7 GHz) and the results were compared
with those obtained from the survey of Larranaga [6]
and [1]. Results are also compared with a public domain
TSP solver based on GA by Michael Lalena [5] having
the proclamation of being the fastest among known
solvers.

Table 1 summarizes the final results obtained by
running the Multiple Inversion GA on several
symmetric TSP instances containing 24, 29, 48, 70 and
100 cities, taken from the TSPLIB [4]. The best results
from 30 run are listed here. The number of populations
is taken 10 for Grtschels24.tsp and bayg29.tsp. The
population is 24 for 48 cities, 30 for 70 cities and 40 for
100 cities. Crossover probability was fixed at 0.85
across the generations. As discussed in Section 2.6, the
mutation probability was varied linearly in with
iteration, maximum being 0.06 and minimum 0.003.
These values are experimentally obtained which gives
very good results.

For Grtschels24.tsp the previous best results for other
GAs were 1272 km [6]. For Grtschels48.tsp the previous
best result of 5074 km was with ER crossover and SIM
mutation [6]. These investigations were carried out with
population size of 200, mutation probability 0.01 and
50000 iterations [6]. The proposed approach exceeds the
previous best result as shown in Table 1 with less no. of
population size and iteration. For st70.tsp our result is
compared with GA of Lalena with best result of 895 km.
As Lalenas software is not downloadable at this instant
for some difficulties in his web site, we compared the
result with that in [1] where Lalenas GA was
downloaded at that time. In [1] it was stated that the best
result for their algorithm is 776 km for st70.tsp with
population size of 50 and 5000 iterations. GA with only
order crossover and simple inversion mutation (OX-
SIM) is implemented next as standard GA for TSP [6, 1]
for all the problems and the results are compared with
SWAP_GATSP.

0-7695-2128-2/04 $20.00 (C) 2004 IEEE

Table 1

Table 2

Table 2 shows the average results after 5000 iterations.
Here OX-SIM is implemented, but the average results
for best previous GA are taken from Larranaga [6].

The SWAP_GATSP and the GA with OX-SIM have
been compared w.r.t. computation time. Both programs
were run for 358 seconds for Grtschels48.tsp and the
fitness of fittest string is plotted with iteration as shown
in Fig 1. In 358 seconds the SWAP_GATSP has gone
through 3600 iterations and the GA with OX-SIM run
for 5000 iterations. The lower graph shows that the
optimal cost of 5046 km is achieved within 800
iterations for the SWAP_GATSP whereas cost is 6773
km for GA with OX-SIM (shown in upper graph).
Similar results are also found when the proposed
method is compared with other GAs stated in [6].

5. Conclusion

The results obtained with the newly designed genetic
operators in our algorithm are impressive, on practical

data set. Larger benchmarks are to be tested next. This
method can be easily adapted to solving the asymmetric
TSP. Experiments on comparing those results with other
existing solvers for asymmetric TSP also need to be
performed. Application of the developed
SWAP_GATSP to real life problems like DNA
fragment assembly, an important issue in
bioinformatics, should be studied. The authors are
currently working in this direction.

C

os
t i

n
km

 fo
r f

itt
es

t s
tri

ng

 G A w ith O X -S IM

 S W A P _ G A T S P

0 5 00 1 00 0 1 500 20 00 250 0 3 00 0 3 500 40 00 450 0 5 00 0
0 .4

0 .6

0 .8

1

1 .2

1 .4

1 .6

1 .8

2

2 .2
x 10

4

References

[1] Sur-Kolay S., Banerjee S., and Murthy C. A., “Flavours of
Traveling Salesman Problem in VLSI Design”, 1st Indian
International Conference on Artificial Intelligence, 2003.

[2] Garey, M. R., and Johnson, D. S.: “Computers and
Intractability: A Guide to the Theory of NP-completeness”, W.
H. Freeman and Co., San Francisco, 1979.

[3] Goldberg, D. E.: “Genetic Algorithm in Search,
Optimization and Machine Learning”, Machine Learning.
Addison-Wesley, New York, 1989.

[4] TSPLIB Homepage:
http://www.iwr.uniheidelberg.de/groups/comopt/software/TSP
LIB95/

[5] Lalena, M.: TSP solver. http://www.lalena.com/ai/tsp

[6] Larranaga, P., Kuijpers, C. M. H.,Murga, R. H., Inza, I.,
Dizdarevic, S.: “Genetic Algorithms for the Travelling
Salesman Problem: A Review of Representations and
Operators”, Artificial Intelligence Review. 13, 1999, 129-
170.

[7] Syswerda, G, “Schedule optimization using genetic
algorithms, Handbook of Genetic Algorithms”, Van Nostrand
Reinhold, New York, 1991, 332-349.

Best results for different TSPs
Prob
lem

Opti
mal

Propo
sed

[5] [1] Best
GA in
[6]

OX-
SIM

Grts
chels
24

1272 1272
(500
iter)

---- ---- 1272 1272
(8,000
iter.)

bayg
29

1610 1610
(600
iter)

---- ---- ---- 1620
(10,000
iter.)

Grts
chels
48

5046 5046
(800
iter.)

---- ---- 5074 5097
(12,000
iter.)

St70 675 685
(2000
iter.)

895 776 ---- 888
(15,000
iter.)

Kro
A
100

21282 21504
(5000
iter.)

---- ---- ---- 22,400
(25,000
iter.)

Problem Proposed
GA

Best GA
in [6]

OX-SIM

Grtschels24 1272 1274 1342
bayg29 1615 ----- 1720
Grtschels48 5110 5154 5451
St70 710 ----- 920
KroA100 21,900 ----- 23,200

No of iterations
Figure 1:Cost of fittest string Vs. Iteration for

Grtschels48.tsp

0-7695-2128-2/04 $20.00 (C) 2004 IEEE

New Genetic Operators for Solving TSP:

Application to Microarray Gene Ordering

Shubhra Sankar Ray, Sanghamitra Bandyopadhyay, and Sankar K. Pal

Machine Intelligence Unit, Indian Statistical Institute, Kolkata 700108
{shubhra r, sanghami, sankar}@isical.ac.in

http://www.isical.ac.in/∼shubhra r

Abstract. This paper deals with some new operators of genetic algo-
rithms for solving the traveling salesman problem (TSP). These include
a new operator called, ”nearest fragment operator” based on the concept
of nearest neighbor heuristic, and a modified version of order crossover
operator. Superiority of these operators has been established on different
benchmark data sets for symmetric TSP. Finally, the application of TSP
with these operators to gene ordering from microarray data has been
demonstrated.

1 Introduction

The Traveling Salesman Problem (TSP) has been used as one of the most impor-
tant test-beds for new combinatorial optimization methods [1]. Its importance
stems from the fact there is a plethora of fields in which it finds applications
e.g., scheduling, vehicle routing, VLSI layout, microarray gene ordering and
DNA fragment assembly. Over decades, researchers have suggested a multitude
of heuristic algorithms, including genetic algorithms (GAs) [1, 2, 3]for solving
TSP. The classical formulation of TSP is stated as: Given a finite set of cities
and the cost of traveling from city i to city j, if a traveling salesman was to visit
each city exactly once and then return to the home city, which tour would incur
the minimum cost?

Let 1, 2, · · · , n be the labels of the n cities and C = [ci,j] be an n × n cost
matrix where ci,j denotes the cost of traveling from city i to city j. The Traveling
Salesman Problem (TSP) is the problem of finding the shortest closed route
among n cities, having as input the complete distance matrix among all cities.
The total cost A of a TSP tour is given by

A(n) =
n−1∑
i=1

Ci,i+1 + Cn,1 (1)

The objective is to find a permutation of the n cities, which has minimum cost.
The TSP, with some minor modifications, can be used to model the microar-

ray gene ordering (MGO) problem. An optimal gene order provides a sequence
of genes where the genes those are functionally related and similar are nearer
in the ordering [4]. This functional relationship among genes is determined by

S.K. Pal et al. (Eds.): PReMI 2005, LNCS 3776, pp. 605–610, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

606 S.S. Ray, S. Bandyopadhyay, and S.K. Pal

gene expression levels from microarray by performing biological experiments [4].
Similarity between genes can be measured with Euclidean distance, Pearson cor-
relation, absolute correlation, Spearman rank correlation, etc.

Two new genetic operators are proposed in this article for solving TSP. Con-
sequently, the application of these operators are demonstrated for solving mi-
croarray gene ordering (MGO) problem efficiently.

2 Relevance of TSP in Microarray Gene Ordering

An optimal gene order, a minimum sum of distances between pairs of adjacent
genes in a linear ordering 1, 2, · · · , n, can be formulated as [5]

F (n) =
n−1∑
i=1

Ci,i+1, (2)

where n is the number of genes and Ci,i+1 is the distance between two genes i
and i + 1. In this study, the Euclidean distance is used to specify the distance
Ci,i+1.

Let X = x1, x2, · · · , xk and Y = y1, y2, · · · , yk be the expression levels of the
two genes in terms of log-transformed microarray gene expression data obtained
over a series of k experiments. The Euclidean distance between X and Y is

Cx,y =
√
{x1 − y1}2 + {x2 − y2}2 + · · · + {xk − yk}2. (3)

One can thus construct a matrix of inter-gene distances, which serves as
a knowledge-base for mining gene order using GA. Using this matrix one can
calculate the total distance between adjacent genes and find that permutation of
genes for which the total distance is minimized. This is analogous to the traveling
salesman problem.

3 GA with New Operators for TSP

In this section, two new operators of GAs for solving TSP are described. These
are nearest fragment (NF) and modified order crossover (MOC). The genetic al-
gorithm designed using these operators is referred to as FRAG GA. The struc-
ture of the proposed FRAG GA is provided in Fig. 1. Here path representa-
tion [1], linear normalized selection and elitism operators are utilized [2]. For
TSP, simple inversion mutation (SIM) [1] is employed.

3.1 Nearest Fragment (NF) Heuristic

The nearest-neighbor (NN) heuristic for creating initial population, have the
advantage that they only contain a few severe mistakes, while there are long
segments connecting nodes with short edges. Therefore such tours can serve
as good starting tours. In NN the main disadvantage is that, several cities are

New Genetic Operators for Solving TSP 607

begin FRAG_GA

Create initial population with Nearest-Neighbor Heuristic

while generation_count < dok

/* k = max. number of generations. */

begin

Apply NF heuristic

Linear normalized selection

MOC

Mutation

Elitism

Increment generation_count

end

Output the best individual found

end FRAG_GA

Fig. 1. The Pseudo-code for FRAG GA

not considered during the course of the algorithm and have to be inserted at
high costs in the end. This leads to severe mistakes in path construction. To
overcome the disadvantages of the NN heuristics, we propose a new heuristic
operator, called the Nearest Fragment (NF) operator, which is used in every
generation (iteration) of GA with a predefined probability for every chromosome
in the population as a subsequent tour improvement method. In this process,
each string (chromosome in GA) is randomly sliced in frag fragments. The value
of frag is chosen in terms of the total number of cities (n) for a particular TSP
instance. For tour construction the first fragment is chosen randomly. From the
last city of that fragment, the nearest city that is either a start or an end point
of a not yet visited tour fragment is determined from the cost matrix. The
fragment containing the nearest city is connected to the selected fragment, with
or without inversion depending on whether the nearest city is the last city of a
fragment or not respectively. The process is repeated until all fragments have
been reconnected.

3.2 Modified Order Crossover (MOC)

Order crossover [6] has been observed to be one of the best in terms of quality
and speed, and yet is simple to implement for solving TSP using GA [1, 2, 3].
In order crossover the length of a substring is chosen randomly. Thus on an
average, the length is equal to n/2. This can lead to a marked increase in the
computational time, which can be reduced if the length of the substring for
performing crossover can be fixed to a small value. However, no study has been
reported in the literature for determining an appropriate value of the length of a
substring for performing order crossover. Such an attempt is made in this article
where it is found that a substring length ′y′ for MOC provides good results
for TSP if y = max{2, α}, where n/9 ≤ α ≤ n/7 (n is the total number of
cities). Unlike order crossover, where the substring length is randomly chosen,
in MOC it is predefined at y. For example, for a 10 city problem the value of α

608 S.S. Ray, S. Bandyopadhyay, and S.K. Pal

is predefined at 1.25, therefore y = 2. The rest of the process in MOC is same
as order crossover.

4 Experimental Results

FRAG GA is implemented in Matlab 5.2 on Pentium-4 (1.7 GHz). The ex-
periment has two parts. In the first part we have compared FRAG GA with
SWAP GATSP [3], and OX SIM (standard GA with order crossover and simple
inversion mutation) [1] for solving benchmark TSP instances like Grtschels24,
kroA100, d198, ts225, pcb442 and rat783 [7]. In the second part for biological
microarray gene ordering, Cell Cycle cdc15, Cell Cycle and Yeast Complexes
datasets are chosen [8]. The three data sets consists of about 782, 803 and 979
genes respectively, which are cell cycle regulated in Saccharomyces cerevisiae,
with different number of experiments (24, 59 and 79 respectively) [4]. Each
dataset is classified into five groups termed G1, S, S/G2, G2/M, and M/G1
by Spellman et. al. [4]. Throughout the experiments the population size is taken
to be 10 for smaller problems (<100 cities/genes), while for larger problems
(≥100 cities/genes) this is set equal to 20. Crossover probability is fixed at 0.85
and mutation probability is fixed at 0.015 across the generations.

For the nearest fragment (NF) operator, each string (chromosome in GA) is
randomly sliced in frag fragments, where frag ∼= n/8. Probability of NF operator
was set to be 0.4 for n greater than 100 and 0.5, otherwise. The value of substring
length for the modified order crossover operator (MOC) is kept in the range n/7
to n/9. All these values were obtained after extensive experiments, which are
omitted here for the lack of space.

Table 1 summarizes the best results and average results obtained by running
the FRAG GA, SWAP GATSP and OX SIM on the aforesaid TSP instances.

Table 1. Cost values using FRAG GA, SWAP GATSP and OX SIM for different TSP

instances

Best Results Average Results

Problem Optimal FRAG GA SWAP OX SIM FRAG GA SWAP OX SIM
GATSP GATSP

Grtschels 1272 1272 1272 1272 1272 1272 1322
24 (130) (500) (8,000) (1000) (2000) (15000)

KroA 21282 21282 21504 22,400 21,350 21,900 22670
100 (800) (5000) (25,000) (2000) (5000) (30000)

d198 15780 15834 15992 16,720 15964 16,132 18200
(3000) (7000) (25,000) (3500) (10000) (40000)

Ts 126643 126730 127012 135800 126890 128532 138283
225 (3000) (7000) (25,000) (3500) (10000) (40000)

Pcb 50778 51104 52620 53402 51930 53,820 59740
442 (8000) (15000) (40,000) (10000) (20000) (65000)

Rat 8806 9007 9732 10810 9442 10110 11520
783 (15000) (30000) (70,000) (20000) (40000) (100000)

New Genetic Operators for Solving TSP 609

Fig. 2. Variation of cost of the best string with number of iteration for kroa100.tsp

For each problem the iteration in which the result is obtained is mentioned in
columns 3-8 within parentheses. In SWAP GATSP and OX SIM the number of
populations is taken to be 10 for 24 and 29 cities, 24 for 48 and 51 cities, 30 for
70 and 76 cities, and 40 for number of cities greater than or equal to 100 [3]. As
can be seen from Table 1 FRAG GA is superior in terms of quality of solution
when compared with other existing GAs [1, 3].

Fig. 2 shows a comparison of FRAG GA, SWAP GATSP and OX SIM when
the fitness value of the fittest string is plotted with iteration. The three programs
were run for 5000 iterations for kroa100.tsp with population 20. At any iteration,
the FRAG GA has the lowest tour cost. It took 304 seconds, 490 seconds and 304
seconds by FRAG GA, SWAP GATSP and OX SIM respectively for executing
5000 iterations. Moreover, only FRAG GA is seen to converge at around 800 iter-
ations at the optimal cost value of 21,282 km. On the other hand, the cost is 21912
km for SWAP GATSP and 25103 km for OX SIM even after 5000 iterations.

The performance of FRAG GA on microarray datasets is evaluated with a
biological score (not used as fitness function of GA), defined by [5]

S(n)=
∑n−1

i=1 Ci,,i+1 where Ci,,i+1 = 1, if gene i and i + 1 are in the same
group

= 0, if gene i and i+1 are not in the same
group.

Using this, a solution of gene ordering has a higher score when more genes
within the same group are aligned next to each other. Table 2 compares the
performance of our FRAG GA with other GA based methods in terms of S
value. It is clear that FRAG GA and NNGA [9] are comparable and they both

Table 2. Comparison of FRAG GA with other algorithms in terms of best score

Algorithms Cell cycle cdc15 Cell cycle Yeast complexes

FRAG GA 537 635 384

NNGA 539 634 384

FCGA 521 627 —-

610 S.S. Ray, S. Bandyopadhyay, and S.K. Pal

dominate FCGA [5]. Note that FRAG GA is a conventional GA, while NNGA
(hybrid GA) uses exhaustive local search methods [10], which provides the key
contribution to optimality (not the GA itself). The main reason behind the good
results obtained by FRAG GA is that, biological solutions of microarray gene
ordering lie in more than one sub optimal point (in terms of gene expression
distance) rather than one optimal point.

5 Conclusion

A new ”nearest fragment operator” (NF) and ”modified version of order crossover
operator” (MOC) of GAs are described along with their implementation for
solving both symmetric TSP and microarray gene ordering problem. Appropriate
number of fragments and appropriate substring length in terms of the number
of cities are determined for NF and MOC respectively, and then applied on
TSP and microarray data. It appears that NF operator is able to augment the
search space quickly and thus obtains much better results compared to other
heuristics. Moreover, MOC requires shorter computation time; thereby balancing
the overhead corresponding to the NF operator.

Acknowledgement

This work is supported by the grant no. 22(0346)/02/EMR− II of the Council
of Scientific and Industrial Research (CSIR), New Delhi.

References

1. Larranaga, P., Kuijpers, C., Murga, R., Inza, I., Dizdarevic, S.: Genetic algorithms
for the traveling salesman problem: A review of representations and operators.
Artificial Intell. Rev. 13 (1999) 129–170

2. Goldberg, D.E.: Genetic Algorithm in Search, Optimization and Machine Learning.
Machine Learning, Addison-Wesley, New York (1989)

3. Ray, S.S., Bandyopadhyay, S., Pal, S.K.: New operators of genetic algorithms for
traveling salesman problem. Volume 2., Cambridge, UK, ICPR-04 (2004) 497–500

4. Spellman, P.T., Sherlock, G., Zhang, M.Q., Iyer, V.R., Anders, K., Eisen, M.B.,
Brown, P.O., Botstein, D., Futcher, B.: Comprehensive identification of cell cycle-
regulated genes of the yeast saccharomyces cerevisia by microarray hybridization.
Molecular Biology Cell 9 (1998) 3273–3297

5. Tsai, H.K., Yang, J.M., Kao, C.Y.: Applying Genetic Algorithms To Finding The
Optimal Gene Order In Displaying The Microarray Data. GECCO (2002) 610–617

6. Davis, L.: Applying adapting algorithms to epistatic domains. Proc. Int. Joint
Conf. Artificial Intelligence (Quebec, canada, 1985)

7. TSPLIB: (http://www.iwr.uniheidelberg.de/groups/comopt/software/TSPLIB95/)
8. (http://www.psrg.lcs.mit.edu/clustering/ismb01/optimal.html)
9. Lee, S.K., Kim, Y.H., Moon, B.R.: Finding the Optimal Gene Order in Displaying

Microarray Data. GECCO (2003) 2215–2226
10. Lin, S., Kernighan, B.W.: An effective heuristic for the traveling salesman problem.

Operation Research 21 (1973) 498–516

Gene Ordering in Partitive Clustering using Microarray Expressions

Shubhra Sankar Ray1, Sanghamitra Bandyopadhyay2, and Sankar K. Pal1

1Center for Soft Computing Research: A National Facility, 2Machine Intelligence Unit,
Indian Statistical Institute,
Email: {shubhra_r, sanghami, sankar}@isical.ac.in

Abstract
Motivation: A central step in the analysis of gene expression data is the identification of
groups of genes that exhibit similar expression patterns. Clustering and ordering the
genes using gene expression data into homogeneous groups was shown to be useful in
functional annotation, tissue classification, regulatory motif identification, and other
applications. Although there is a rich literature on gene ordering in hierarchical clustering
framework for gene expression analysis, to the best knowledge of the author, there is no
work addressing and evaluating the importance of gene ordering in partitive clustering
framework. Outside the framework of hierarchical clustering, different gene ordering
algorithms are applied on the whole data set, and the domain of partitive clustering is still
unexplored with gene ordering approaches.

Results: A new hybrid method for ordering genes in each of the clusters of partitive
clustering solution using microarray gene expressions is proposed. Two existing ordering
algorithms used for optimally ordering cities in Travelling Salesman Problem (namely,
Concorde [1] and FRAG_GA [2]), are hybridized individually with Self Organizing MAP
to show the importance of gene ordering in partitive clustering framework. We validated
our hybrid approach using Yeast and Fibroblast data and showed that our approach
improves the result quality of partitive clustering solution, by identifying subclusters
within big clusters, minimization of summation of gene expression distances and the
maximization of biological gene ordering using MIPS categorization. Moreover, the new
hybrid approach, finds comparable or sometimes superior biological gene order than
those obtained by optimal leaf ordering in hierarchical clustering solution [3].

Reference:
[1] D. Applegate, R. Bixby, V. Chvátal, and William Cook, “Concorde Package. [Online],”
ww.tsp.gatech.edu/concorde/downloads/codes/src/ co031219.tgz, 2003.

[2] Shubhra Sankar Ray, Sanghamitra Bandyopadhyay and Sankar K. Pal, “Genetic Operators for
Combinatorial Optimization in TSP and Microarray Gene Ordering”, Applied Intelligence
(published online: epub ahead of print), 2006

[3] Z. Bar-Joseph, D. K. Gifford, and T. S. Jaakkola, "Fast optimal leaf ordering for hierarchical
clustering,” Bioinformatics, vol.-17, pp- 22-29, 2001.

http://www.isical.ac.in/%7Eshubhra_r/rayapplied.pdf
http://www.isical.ac.in/%7Eshubhra_r/rayapplied.pdf

New Distance Measure for Microarray Gene Expressions using Linear Dynamic
Range of Photo Multiplier Tube

Shubhra Sankar Ray
Center for

Soft Computing Research
Indian Statistical Institute

Kolkata, India
shubhra r@isical.ac.in

Sanghamitra Bandyopadhyay
Machine Intelligence Unit
Indian Statistical Institute

Kolkata, India
sanghami@isical.ac.in

Sankar K. Pal
Center for

Soft Computing Research
Indian Statistical Institute

Kolkata, India
sankar@isical.ac.in

Abstract

This paper deals with a new distance measure for genes
using their microarray expressions. The distance measure is
called, “Maxrange distance”, where an experiment specific
normalization factor is incorporated in the computation of
the distance. The normalization factor is dependent on the
linear dynamic range of the photo multiplier tube (PMT)
for scanning fluorescence intensities of the gene expression
values. Superiority of this distance measure in the microar-
ray gene ordering problem has been extensively established
on widely studied microarray data sets by performing sta-
tistical tests.

1 Introduction

The recent advances in DNA array technologies have re-
sulted in a significant increase in the amount of genomic
data [3, 2]. The most powerful and commonly used tech-
nique is that involving microarray, which has enabled the
monitoring of the expression levels of more than thousands
of genes simultaneously. Due to the large quantity of in-
formation available from microarray it is necessary to find
an appropriate distance measure for genes and to employ a
process of classification of the data in order to obtain initial
conclusions about the genes.

The present article deals with the tasks of measuring the
distance between genes and evaluating their biological or-
dering in clustering framework. The widely used measures
for finding the global similarity (where all the gene expres-
sion values present in the gene are taken into considera-
tion) between genes are the Pearson correlation [3, 2] and
the Euclidean distance [8]. In computing the similarity, all
the above mentioned measures do not assign appropriate
weights to gene expressions obtained from different types

of experiments, where the expressions differ by orders of
magnitude from one type to another. Consequently, gene
expression values in lower dynamic range do get dominated
by those with higher dynamic range. A new similarity mea-
sure between genes, called “Maxrange distance” is defined
in this article, where gene expression (for a particular type
of experiment) distance between two genes are first normal-
ized with a factor dependent on the linear dynamic range of
photo multiplier tube (used for scanning fluorescence inten-
sities of that experiment), and then summed to find a global
distance.

Superiority of the proposed Maxrange distance measure
over the related measures is established by using them on
four different algorithms.

2 Gene Ordering Methods

Cluster analysis, ordering, and display of gene expres-
sion patterns are considered to be useful tools to detect
genes that are co-expressed or implicated in similar cellular
functions [3, 2]. Hierarchical clustering approaches (single,
complete and average linkage) [3, 1] group gene expres-
sions into trees of clusters. They start with singleton sets
and merge all genes until all nodes belong to only one set.
Hierarchical clustering does not determine unique clusters.
Thus the user has to determine which of the subtrees are
clusters and which subtrees are only a part of a bigger clus-
ter. So in the framework of hierarchical clustering a gene
ordering algorithm helps the user to identify clusters, and
subclusters in big clusters, by means of visual inspection
of the clustered gene expression data [1]. Moreover, genes
that are adjacent in a linear ordering are often functionally
co-regulated and involved in the same cellular process [2, 3]
and biological analysis is often done in the context of this
linear ordering [1].

Ideally, one would like to obtain a linear order of all

Proceedings of the International Conference on Computing: Theory and Applications (ICCTA'07)
0-7695-2770-1/07 $20.00 © 2007

genes that puts similar genes close to each other; such that
for any two consecutive genes the distance between them is
small. An optimal gene order can be obtained by minimiz-
ing the summation of gene expression distances (or maxi-
mizing summation of gene expression similarities) between
pairs of adjacent genes in a linear ordering 1, 2, · · · , n. This
can be formulated as [2]

F (n) =
n−1∑
i=1

Ci,i+1, (1)

where n is the number of genes and Ci,i+1 is the dis-
tance/similarity between two genes i and i+1 obtained from
distance/similarity matrix.

Though hierarchical clustering provides good gene order
[3] by grouping co-regulated genes, there is still much room
in improving gene order. A hybrid method (first clustering
then ordering) for ordering genes for a hierarchical cluster-
ing solution is proposed in [1] where dynamic programming
is applied to flip internal nodes to reorder the leaves in a hi-
erarchical solution.

3 Materials and Methods

3.1 Preliminaries of Microarray Technology

In general, microarray data can be represented by a real
valued matrix; each row represents a gene and each col-
umn (or a set of columns) represents a condition, or exper-
iment. In cDNA (clone DNA) microarray-based investiga-
tions, RNA from experimental samples (taken at selected
times during the process) is labeled during reverse tran-
scription with the red-fluorescent dye Cy5 and is mixed
with a reference sample labeled in parallel with the green-
fluorescent dye Cy3 [3]. After hybridization and appropri-
ate washing steps, separate images/spots are acquired for
each fluor, and fluorescence intensity ratios are obtained for
all target elements. If R (red) and G (green) are the spot-
specific, quantitated, fluorescent intensities of the target and
reference expression signals respectively, relative gene ex-
pression is defined as the log ratio M = log2

R
G . For mi-

croarray data table each cell represents the M value at the
corresponding target element [3] obtained from the gene un-
der that experimental condition.

Fluorescence is currently the predominant method for
microarray signal detection [5]. A critical component of a
fluorescence scanner is the photomultiplier tube (PMT), in
which fluorescent photons produce electrons that are am-
plified by the PMT voltage, also referred to as the PMT
gain. For many microarray scanners, the PMT gain is an
easily adjustable parameter, and the calibration curve (i.e.,
the curve showing the relationship between dye concentra-
tion and fluorescence intensity) depends on the gain setting

[5]. This PMT gain is also varied for different types of
experiments of different biological origin. DNA microar-
ray measurements normally assume a linear relationship be-
tween detected fluorescent signal and the concentration of
the fluorescent dye. Each PMT has its own linear dynamic
range within which signal intensity increases linearly with
the increase of fluorescent dye concentration [5]. This linear
dynamic range also fixes the dynamic range of the recorded
microarray data (log ratio values) within which the data val-
ues are most reliable and used as the normalization factor
in the proposed distance measure to remove variations of
biological origin. For example, in Cell Cycle related ex-
periments, for dye Cy5, PMT gain at 960 volts fixes the
intensity range from x1 to x2, and for dye Cy3, PMT gain
at 760 volts fixes the intensity range from y1 to y2. So the
linear dynamic range of PMT fixes the linear dynamic range
of the data from log2

x1
y1 to log2

x2
y2 . Note that, this dynamic

range is available either from the supplementary informa-
tion (website) of the article/data (Yeast datas), or upon re-
quest to the authors (Herpes data) and not from the datasets,
and hence is not sensitive to outliers. The proposed dy-
namic range based normalization belongs to the category
of between-slide or multiple-slide normalization with two
other members median absolute deviation (MAD) and vari-
ance regularization. The MAD and variance regularization
are dynamic range estimators (not the real one) and are also
implemented for the purpose of comparison. However, the
results obtained were similar to without any normalization.

3.2 Description of Data Sets

For gene ordering, data sets like Cell Cycle [4], Yeast
Complex [3, 1], All Yeast [3], and Herpes [7] are chosen.
Table 1 shows the name of the data sets, number of genes
in each dataset, number of gene categories, name of exper-
iment types and number of experiments performed under
each type, and finally the total number of experiments per-
formed for a particular dataset. The dynamic range of ex-
pression values of each experiment is shown within paren-
thesis. The dynamic range of available data represents log
ratios of -1.2 to 1.2 for the cell-cycle experiments, -3.0 to
3.0 for sporulation, -1.5 to 1.5 for the shock experiments,
-2.0 to 2.0 for the diauxic shift, and -13.0 to 13.0 for Herpes
data. The first three data sets of Saccharomyces cerevisiae
consists of about 652, 979 and 6221 genes, and 184, 79 and
80 microarray experiments respectively. The genes in the
three data sets are classified according to MIPS [6] cate-
gorization into 16, 16, and 18 groups respectively. Herpes
virus genes are broadly assigned to five functional groups
and available in [7].

Proceedings of the International Conference on Computing: Theory and Applications (ICCTA'07)
0-7695-2770-1/07 $20.00 © 2007

Table 1. Summary for different microarray data sets
Dataset No. of genes Category Experiments performed Total

Cell Cycle sporulation shock diauxic shift
Cell Cycle 652 MIPS (-1.2 to 1.2) (-3.0 to 3.0) (-1.5 to 1.5) (-2.0 to 2.0)

16 93 9 56 26 184
Cell Cycle sporulation shock diauxic shift

Yeast Complex 979 MIPS (-1.2 to 1.2) (-3.0 to 3.0) (-1.5 to 1.5) (-2.0 to 2.0)
16 18+14+15 7+4 6+4+4 7 79

Cell Cycle sporulation diauxic shift
All Yeast 6221 MIPS (-1.2 to 1.2) (-3.0 to 3.0) (-2.0 to 2.0)

18 60 13 7 80
No KSHV -TPA TPA

Herpes 106 GeneBank (-13.0 to 13.0) (-13.0 to 13.0) (-13.0 to 13.0)
5 1 7 13 21

3.3 New Distance Measure

A natural basis for organizing gene expression data is
to group together genes with similar patterns of expression.
The first step to this end is to adopt a mathematical descrip-
tion of distance. A number of measures of distance in the
behavior of two genes can be used, such as the Manhat-
tan distance [8], Euclidean distance [8], Pearson Correla-
tion distance [2]. These distance measures usually take the
same normalization factor (like standard deviation for Pear-
son correlation) for a gene. This normalization factor is in-
dependent of the type of experiment and performs global
normalization to all the expression values for a particular
gene; thus loosing useful local information. But, a closer
look at the gene expression data reveals that the dynamic
range of expression values differs with the type of experi-
ment, and remains the same for all the genes in the dataset.
So, using the same normalization factor is undesirable for
all types of experiments, where expression values differ by
orders of magnitude from one kind of experiment to an-
other. Consequently, it may be appropriate and better if the
normalization is performed

• separately for the different types of experiment with
different normalizing factors; thereby preserving the
local information

• keeping the same set of normalization factors for all
the genes in the dataset.

Such an attempt is made in this article where two new
distance measures are developed using Manhattan distance
and Euclidean distance respectively (to avoid over sensitiv-
ity to three fold changes), in which the normalization is de-
pendent on the type of experiment. This, in turn, results in
equal weighting of distance values for different experiment

types. The normalization factor is chosen as the linear dy-
namic range of data values obtained from photo multiplier
tube, for a particular type of experiment.

Let
X = xe1

1 , · · · , xe1
i1

, xe2
1 , · · · , xe2

i2
, · · · , xem

1 , · · · , xem

im
and

Y = ye1
1 , · · · , ye1

i1
, ye2

1 , · · · , ye2
i2

, · · · , yem
1 , · · · , yem

im

be the expression levels of the two genes in terms of log-
transformed microarray gene expression data obtained over
a series of m different types of experiment (e1, e2, · · · em)
consisting of i1 + i2 + · · · + im experiments in total. Using
Manhattan distance the Maxrange distance between X and
Y is defined as

Maxrange-MX,Y =
1
m

m∑
r=1

1
ir

×
∑ir

j=1 |xer

j − yer

j |
Maxer − Miner

(2)

where, Maxer and Miner are the maximum and mini-
mum log2(R/G) values obtained from the linear dynamic
range of the photo multiplier tube (or radioactive probe) for
an experiment of type er.

Using the Euclidean distance the Maxrange distance be-
tween X and Y is defined as

Maxrange-EX,Y =
1
m

m∑
r=1

1
ir

×
√∑ir

j=1(x
er

j − yer

j)2

Maxer − Miner

(3)
Throughout the literature we have used Maxrange-M and

Maxrange-E for representing Maxrange distance measure
using Manhattan and Euclidean distance respectively.

4 Biological Interpretation

A biological score, that is different from the similar-
ity/distance measures, is used to evaluate the final gene

Proceedings of the International Conference on Computing: Theory and Applications (ICCTA'07)
0-7695-2770-1/07 $20.00 © 2007

ordering. Each gene that has undergone MIPS catego-
rization can belong to one or more category, while there
are many unclassified genes also (no category). A vector
V (g) = (v1, v2, · · · , vj) is used to represent the category
status of each gene g, where j is the number of categories.
The value of vj is 1 if gene g is in the jth category; other-
wise is zero. Based on the information about categorization,
the score of a gene order for multiple class genes is defined
as [9]

S(n) =
N−1∑
i=1

G (gi, gi+1) , (4)

where N is the number of genes, gi and gi+1 are the adja-
cent genes and G (gi, gi+1) is defined as

G (gi, gi+1) =
j∑

k=1

V (gi)kV (gi+1)k, (5)

where V (gi)k represents the kth entry of vector V (gi).
Note that, S(n) can also be used as scoring function for
single class genes like Herpes genes. Using scoring func-
tion S(n), a gene ordering would have a higher score when
more genes within the same group are aligned next to each
other. So higher values of S(n) are better and can be used
to evaluate the goodness of a particular gene order. Note
that, although these scoring functions provide a good quan-
titative index for gene ordering, using S(n) as the similarity
measure in ordering is not practical, since the information
about gene categories is unknown for most of the genes in
the real world.

5 Experimental Results

Algorithms of gene ordering and clustering are imple-
mented using mex files in Matlab 7 on Sun Fire V 890
(1.2 GHz and 8 GB RAM). The codes for single, average
and complete linkage and Bar-Joseph et al.’s [1] method
are downloaded from [10]. Performance of the proposed
Maxrange-M and Maxrange-E distance are compared with
Pearson correlation, Euclidean distance, and Manhattan dis-
tance.

5.1 Comparative Performance of Distance Mea-
sures

Table 2 compares the performance of our proposed mea-
sure with those of the other measures in terms of the S1
value (Eq. 4). Three distance measures are considered,
namely, Maxrange-M, Pearson and Euclidean. The biolog-
ical scores corresponding to Manhattan Distance are found
to be comparable to those for Pearson Correlation, and
hence omitted here. The percentages of improvement over

the lowest biological score (in terms of S1 value) in a par-
ticular data set are shown within parenthesis, and defined
as:

PIi,j =
di,j − mini(di,j)

mini(di,j)
× 100 (6)

where, di,j indicates the biological score (S1 value) in
ith row and jth column of the result matrix in Table 2, and
mini(di,j) indicates the minimum biological score in col-
umn j for all i. These PI values in Table 2 are used in the
next section for conducting t-tests.

Though in most of the cases Maxrange-E distance is
found to be superior to Euclidian distance and inferior
to Maxrange-M, for All Yeast data, it performs better
(S(n)=2441) than Maxrange-M (S(n)=2341) for average
linkage algorithm. When the microarray data sets con-
tain experiments with data value of same dynamic range,
like Herpes, then Maxrange-M provides identical results
with Manhattan distance for all widely used ordering algo-
rithms. However the superiority of Maxrange-M is evident
when different types of experiments are present in a par-
ticular microarray data. For example, superior results are
obtained with Maxrange-M for most of the available algo-
rithms for the Cell Cycle, Yeast complex and All Yeast data
sets (shown in first row for each algorithm in Table 2).

5.2 Statistical Analysis of Maxrange-M Distance
Measure

To statistically compare the performance of Maxrange-
M distance with Pearson Correlation in case of ordering al-
gorithms, t-tests are performed with the PI (Eq. 6) values
shown within parenthesis in Table 2, using the equation

t =
PI1 − PI2√

V ariancePI1
n1

+ V ariancePI2
n2

. (7)

where, PI1 and V ariancePI1 are the mean and the vari-
ance of all the available PI values for Maxrange-M dis-
tance in Table 2. PI2 is used for Pearson Correlation and
n1 = n2 = 16, as there are 16 PI values available in to-
tal from Table 2 for each of the distance measures with 4
datasets and 4 algorithm. So, the degrees of freedom for t-
test are 16 × 2 − 2 = 30. Similarly, t-test is also performed
for Maxrange-M distance and Euclidean distance. The two
t values and related p values are shown in Table 3. The al-
ternative hypothesis (H1), that the average of ‘percentages
of improvement over the lowest biological score’ for the
Maxrange-M distance is better than the related one (Pear-
son or Euclidean), is used in the calculation of t-statistics.
The final conclusion, once the test has been carried out, is
always given in terms of the null hypothesis (H0), that there
is no difference between the averages of ‘percentages of im-
provement over the lowest biological score’ for the two dis-
tance measures. After finding the p values (from t-table)

Proceedings of the International Conference on Computing: Theory and Applications (ICCTA'07)
0-7695-2770-1/07 $20.00 © 2007

Table 2. Biological Score (S(n)) and Percentage of Improvement (PI) value (within parenthesis) for
different distance measures and algorithms

Data Sets
Distance Algorithm Cell Yeast All Herpes

cycle complexes Yeast
Maxrange-M Bar-Joseph 423 (17.83) 1074 (26.50) 2371 (22.85) 43 (19.44)

Average Linkage 415 (15.60) 1040 (22.50) 2341 (21.30) 39 (8.33)
Complete Linkage 407 (13.37) 1043 (22.85) 2305 (19.43) 38 (5.56)

Single Linkage 382 (6.41) 903 (6.36) 1970 (2.07) 41 (13.89)
Pearson Bar-Joseph 381 (6.13) 1024 (20.61) 2350 (21.76) 38 (5.56)

Average Linkage 385 (7.24) 987 (16.25) 2292 (18.76) 38 (5.56)
Complete Linkage 393 (9.47) 955 (12.49) 2301 (19.22) 36 (0.00)

Single Linkage 359 (0.00) 902 (6.24) 1973 (2.23) 39 (8.33)
Euclidean Bar-Joseph 421 (17.27) 1013 (19.32) 2346 (21.55) 40 (11.11)

Average Linkage 403 (12.26) 1011 (19.08) 2431 (25.96) 39 (8.33)
Complete Linkage 403 (12.26) 999 (17.67) 2269 (17.56) 37 (2.78)

Single Linkage 361 (0.56) 849 (0.00) 1930 (0.00) 36 (0.00)

Table 3. Results of t-test for different pairs of
distance measures

Pairs of distance measure
Maxrange-M Maxrange-M

& Pearson & Euclidean
t 2.0134 1.2709
p 0.027 > p 0.107 > p

for corresponding t values, we reject the null hypothesis
for both the cases with significance level 0.027 and 0.107
respectively, which suggests that there is strong evidence
against the null hypothesis in favor of the alternative.

6 Conclusion

A new measure called Maxrange, for evaluating the dis-
tance between genes, is used for efficiently ordering the
genes in terms of their expression values for microarray
datasets. The available measures for gene distance, like
Manhattan Distance, Euclidean distance, and Pearson cor-
relation, use only one normalization factor (1, 1, and stan-
dard deviation respectively) for all types of experiments, al-
though the expression values may differ by orders of mag-
nitude from one kind of experiment to another. As a con-
sequence, the distance between genes may not be properly
reflected in these measures for microarray data having dif-
ferent types of experiments. In contrast, normalization is
performed separately with different normalizing factors for
the different types of experiment in our Maxrange-M and
Maxrange-E distance. This makes it, suitable for both sin-

gle type and multiple type of experiments and, promising
for microarray gene expression related experiments.

References

[1] Z. Bar-Joseph, D. K. Gifford, and T. S. Jaakkola. Fast opti-
mal leaf ordering for hierarchical clustering. Bioinformatics,
17:22–29, 2001.

[2] T. Biedl, B. Brejov, E. D. Demaine, A. M. Hamel, and
T. Vinar. Optimal arrangement of leaves in the tree rep-
resenting hierarchical clustering of gene expression data.
Technical Report 2001-2014, Dept. Computer Sci., Univ.
Waterloo, 2001.

[3] M. B. Eisen, P. T. Spellman, P. O. Brown, and D. Botstein.
Cluster analysis and display of genome-wide expression
patterns. Proc. National Academy of Sciences, 95:14863–
14867, 1998.

[4] G. S. et al. The stanford microarray database. Nucleic Acids
Research, 29(1):152–155, 2001.

[5] L. S. et al. Microarray scanner calibration curves:
characteristics and implications. BMC Bioinformatics,
6((Suppl2):S11):1–14, 2005.

[6] M. I. for Protein Sequences. http://www.mips.com.
[7] R. G. Jenner, M. M. Alb, C. Boshoff, and P. Kellam. Ka-

posi’s sarcoma-associated herpesvirus latent and lytic gene
expression as revealed by dna arrays. Journal of Virology,
75(2):891–902, 2001.

[8] E. F. Krause. Taxicab Geometry: An Adventure in Non-
Euclidean Geometry. 1986.

[9] H. K. Tsai, J. M. Yang, Y. F. Tsai, and C. Y. Kao. An
Evolutionary Approach for Gene Expression Patterns. IEEE
Trans. on Info. Tech. in Biomedicine, 8(2):69–78, 2004.

[10] D. Venet. MatArray: a Matlab toolbox for microarray data.
Bioinformatics, 19(5):659–660, 2003.

Proceedings of the International Conference on Computing: Theory and Applications (ICCTA'07)
0-7695-2770-1/07 $20.00 © 2007

Predicting Gene Function in Yeast through Adaptive Weighting
of Multi-Source Information

Shubhra Sankar Ray 1,∗, Sanghamitra Bandyopadhyay 2, Sankar K. Pal 1

1. Center for Soft Computing Research, Indian Statistical Institute, Kolkata, India
2. Machine Intelligence Unit, Indian Statistical Institute, Kolkata, India

∗E-mail: shubhra r@isical.ac.in

Background

The value of combining informations obtained from different methods, for gene function
predictions, has been illustrated by several studies [1, 2, 3, 4]. We propose a new scoring
framework, called Adaptive Score (AdS), for predicting the function of a few unclassified
Yeast genes. We mainly focus on phenotypic profiles [5], microarray gene expression (All
Yeast data [6]), KEGG pathway database [7], protein sequence similarity through transitive
homologues, and protein-protein interactions from BioGRID [8] as data-sources. We use
the Pearson correlation for similarity extraction from phenotypic profile and gene expression
data. All the protein sequences, except Yeast proteins, corresponding to each KEGG path-
way (121 pathways in the second level) are downloaded from PIR to extract profile similarity
between two Yeast proteins. Profile vector for each protein in Yeast is computed by com-
paring its sequence across 121 pathway databases, using BLAST. The method is similar to
phylogenetic profile [9] construction. To find the similarity between two genes using KEGG
profiles, we used the ratio of dot product value and OR value between two profiles. To detect
similarity between two proteins sequences through transitive homologues, 37,66,477 protein
sequences are downloaded from UniProt and compared with target proteins by using BLAST
[10], the metric of ProClust [11], and the method described in [12]. For protein-protein in-
teraction study, manually curated catalogues of known interactions are downloaded from
BioGRID [8] and binary interactions are used as the common unit of analysis.

Benchmarking

The similarities arising from various data-sources are separately benchmarked, based on the
super GO-Slim process annotations of genes in the Saccharomyces Genome Database (SGD).
The proportion of true positives (TP) gene-pairs at a particular similarity value (computed
from a data-source) can be used as a benchmarking method [1], where TP gene-pairs are
defined as pairs of genes i and j, such that genes i and j have an overlapping (explicit or
implicit) super GO-Slim process term annotation. Figure 1.a compares the similarity values
obtained from different data-sources in terms of their proportionTP . The proportionTP

values for intermediate similarity values are calculated from the slopes of the respective
curves. The proportionTP for protein-protein interactions has a constant value 0.69 at a
similarity value of 1 and hence it is not shown in Fig. 1.a.

New Scoring Framework

The proportionTP values reflect the accuracy of similarity values, but do not provide any in-
formation about importance/weight of one data-source in presence of the other data-sources,

THE EIGHTH INTERNATIONAL CONFERENCE ON SYSTEMS BIOLOGY

ICSB 2007
October 1 – 6, 2007 Long Beach, California, USA

www.icsb-2007.org

Administrator
Text Box
http://www.eas.caltech.edu/ICSB2007/ICSB2007proceedings.zip

in predicting gene-pairs. Consequently, it will be more appropriate if proportionTP val-
ues of each data-source, in presence of other data-sources, is weighed by a different factor
and then integrated; and the factors are dependent on the proportionTP of the integrated
proportionTP values of different data-sources. In this investigation we propose a new score
where, proportionTP values (computed from different data-sources) between two genes X

and Y are added through weights a, b, c, d, and e in a linear combination style. This score
is referred to as Adaptive Score (AdS) and is defined as

AdSX,Y =
a× PpX,Y + b× PmX,Y + c×KpX,Y + d×BX,Y + e× IX,Y

a + b + c + d + e
(1)

where a, b, c, d, and e are varied within range 0 to α in steps of 1 to find a combination
that maximizes the proportionTP (using super GO-Slim process) for a user defined cut-off
of top gene-pairs. The weights a, b, c, d, and e are assigned to the complete proportionTP

matrices calculated from individual data-sources. Our gold standard cut-off (user defined)
of top gene-pairs is determined from KEGG pathway profiles, which provides 26432 gene-
pairs with similarity value 1 and gold standard constant proportionTP value of .81. These
gene-pairs are the most accurate of all, whereas the accuracy (proportionTP) of other data-
sources, as well as gene-pairs below top 26432 for KEGG pathway profiles, vary considerably.

Evaluation

As super GO-Slim process was used for determining the weights of the data-sources, top
level classification of MIPS October 2005 annotation is now used to evaluate the perfor-
mance of AdS. We sorted the similarity values computed from different data-sources in
descending order, and drew a curve for top gene-pairs verses proportionTP from the sorted
data for each form of data-source (Fig. 1.b). In contrast, proportionTP for protein-protein
interactions has a constant value of 0.69 and not shown in Fig.1.b. Figure 1.b also com-
pares the performance of AdS and ‘final log likelihood scores’ of Lee et al.’s [3] probabilis-
tic network (downloaded from the website mentioned in [13]) in terms of proportionTP

with MIPS annotation. From the figure it is clear that the gene-pairs identified in this
investigation is better than any other existing network or data-sources. The top 1, 00, 000
gene-pairs predicted by our method with proportionTP values above 0.755 are available
at http://www.isical.ac.in/˜scc/Bioinformatics/AdS/toprelation.txt in tabular form. The
proportionTP values computed from individual data-source are also shown in the file.

Results and Discussions

Genes are considered to be linked if they are among the 10 closest neighbors within a given
distance or similarity cut-off [2]. Genes are clustered with a method based on the K Nearest
Neighbors (KNN) algorithm [14] by selecting K = 10 and using AdS with gold standard
cut-off value 0.77. The method is denoted as KNN-AdS. The biological significance of the
clusters generated by our KNN-AdS is evaluated with 400 different MIPS functional cate-
gories. Clusters with P-values greater than 10−5 are not reported. 2507 clusters are identified
with at-least three or more members. Out of these clusters, 1915 clusters are identified with
functional enrichment in one or more categories. From functionally enriched clusters we pre-

www.icsb-2007.org

Administrator
Text Box
http://www.eas.caltech.edu/ICSB2007/ICSB2007proceedings.zip

dict the functions of 1855 classified genes (with 95.16% accuracy) and 60 unclassified genes
by assigning the function related with the smallest P -value. The functional enrichment, in
one or more categories, for clusters intended for 60 unclassified yeast genes are available in
tabular form at http://www.isical.ac.in/˜scc/Bioinformatics/AdS/unclassifiedprediction.xls.
The function with the smallest P -value in the table represents the predicted function for the
unclassified gene, and the three values in the parenthesis denote the function related P -value,
no. of genes in the cluster, no. of genes in the genome, respectively. The table also includes all
the genes within each cluster, the proportionTP values arising from various data-sources, and
the AdS values. A table containing the predicted functions of 1855 classified yeast genes is
available at http://www.isical.ac.in/˜scc/Bioinformatics/AdS/classifiedprediction.xls. Out
of 60 unclassified genes, YEL041W and YDR459C are now (April 2007) classified in MIPS,
and our function predictions for these two genes are in agreement with present MIPS
classification. YEL041w is related with the category ‘phosphate metabolism’ (4 out of 5
genes, p-value 1.42 × 10−6). YDR459C is related with category ‘modification with fatty
acids’ (4 out of 11, P -value 2.3 × 10−7). Our top predictions consist the function of 12
unclassified (MIPS 2007) and 417 classified genes at P -value cut-off 1 × 10−13 and with
98.20% accuracy. The related Table for top 12 predictions and discussions are available at
http://www.isical.ac.in/˜scc/Bioinformatics/AdS/top12predictions.pdf.

Figures

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Similarity Value−−−−−>

pr
op

or
tio

nT
P

−
−

−
−

−
−

>

Transitive homology
KEGG Pathway profile
Microarray
Phenotypic Profile

0 1 2 3 4 5 6 7 8 9

x 10
4

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of top relations−−−−−>

pr
op

or
tio

nT
P

−
−

−
−

−
−

>

Transitive homology
KEGG Pathway profile
Lee et al. Probabilistic Network
Microarray
Phenotypic Profile
Adaptive Similarity

a) b)

Figure 1: a) proportionTP Vs. similarity values for different types of data-sources. b)
Comparing Adaptive Score and individual data-source in terms of proportionTP versus the
number of top gene-pairs.

References

At http://www.isical.ac.in/˜scc/Bioinformatics/AdS/top12predictions.pdf the references are
available.

www.icsb-2007.org

Administrator
Text Box
http://www.eas.caltech.edu/ICSB2007/ICSB2007proceedings.zip

	palcodec.pdf
	Bioinformatics in Neurocomputing Framework
	
	
	INTRODUCTION
	BIOINFORMATICS TASKS
	Gene Sequence Analysis
	B. Protein Analysis
	C. Microarrays
	D. Gene Regulatory Network Analysis
	A. Sequence Analysis

	B Protein Analysis
	C. Microarray

	CONCLUSION AND SCOPE OF FUTURE RESEARCH

	tsp1.pdf
	Select a link below
	Return to Main Menu
	Return to Previous View

	NEwoperatorsGALNCS.pdf
	Introduction
	Relevance of TSP in Microarray Gene Ordering
	GA with New Operators for TSP
	Nearest Fragment (NF) Heuristic
	Modified Order Crossover (MOC)

	Experimental Results
	Conclusion

	INCOB.pdf
	Gene Ordering in Partitive Clustering using Microarray Expressions
	Abstract

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages false
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages false
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages false
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

