
New Operators of Genetic Algorithms for Traveling Salesman Problem
Shubhra Sankar Ray, Sanghamitra Bandyopadhyay and Sankar K. Pal

Machine Intelligence Unit
Indian Statistical Institute

Kolkata 700108
{shubhra_r, sanghami, sankar}@isical.ac.in

Abstract
This paper describes an application of genetic algorithm
to the traveling salesman problem. New knowledge
based multiple inversion operator and a neighborhood
swapping operator are proposed. Experimental results
on different benchmark data sets have been found to
provide superior results as compared to some other
existing methods.
Keywords: knowledge based multiple inversion, order
crossover, knowledge based neighborhood swapping.

1. Introduction

The Traveling Salesman Problem (TSP) is one of the top
ten problems, which has been addressed extensively by
mathematicians and computer scientists. Its importance
stems from the fact there is a plethora of fields in which
it finds applications e.g., DNA fragment assembly,
VLSI design. The classical formulation is stated as:
Given a finite set of cities and the cost of traveling from
city i to city j, if a traveling salesman were to visit each
city exactly once and then return to the home city, which
tour would incur the minimum cost? Formally, the TSP
may be defined as follows [1]:

Let {1, 2, ... n} be the labels of the n cities and C = [ci,j]
be a n×n cost matrix where ci,j denotes the cost of
traveling from city i to city j. The total cost A of a TSP
tour is given by

A(п) = ∑
−

=

1

1

n

i
Ci,,i+1 + C n,1 (1)

The objective is to find a permutation of the n cities
which has minimum cost. The TSP is a very well known
NP-hard problem [2] and therefore any problem
belonging to the NP-class can be formulated as a TSP
problem.

 Over decades, researchers have suggested a multitude
of heuristic algorithms, including genetic algorithms
(GAs) [3], for solving TSP [6]. In this article we
propose some new operators, namely Knowledge Based
Multiple Inversion (KBMI) and Knowledge Based
Neighborhood Swapping (KBNS) along with a

Modified Order Crossover for solving TSP. The
experimental results obtained on TSP benchmarks have
been found to be superior in terms of quality of solution
when compared with other existing GAs [6].

2. Proposed GA for TSP

A new algorithm, called SWAP_GATSP, is described in
this section for solving TSP using elitist GAs with new
operators namely, Knowledge Based Multiple Inversion,
Modified Order Crossover and Knowledge Based
Swapping. The structure of the proposed
SWAP_GATSP is presented below.

begin SWAP_GATSP
 Create initial population of tours randomly.
 while generation_count < k do
 /* k = max. no. of generations.*/
 begin
 KBMI
 Natural selection
 MOC
 KBNS

 Mutation
 Elitism
 Increment generation_count.
end ;
Output the best individual found.

end SWAP_TSP.

2.1. String representation and Cost function

In order to find the shortest tour for a given set of n
cities using GAs, the path representation [6] is
more natural for TSP and has been well studied. In
this encoding, the string representation for a TSP
tour is an array of n integers which is a permutation
of {1, 2, …… n}. The objective is to find a string
with minimum cost. In the following subsections
the new genetic operators employed in the
proposed GA are described.

2.2. Knowledge Based Multiple Inversion

0-7695-2128-2/04 $20.00 (C) 2004 IEEE

 In this process for each string the distance between
every two consecutive cities is calculated from the cost
matrix and the distances are sorted in descending order.
A record is kept so that one can find which distance
corresponds to which two cities.
 Suppose for a string (1 2 3 4 5 6 7 8 9) the sorted
distances are between cities
 (1,2), (5,6), (3,4), (4,5), (9,1), (2,3), (8,9), (6,7) and
(7,8).
Now the substring between the highest two distances
(1,2) and (5,6) is inversed, resulting in the parent (P) and
the child (C) as follows

 P1 = (1 |2 3 4 5 |6 7 8 9)
 and
 C1 = (1 |5 4 3 2 |6 7 8 9)

This inversion procedure is repeated for pairs [(3,4) and
(4,5)], [(9,1) and (2,3)], [(8,9) and (6,7)] and so on for
string with higher no of cities with the condition that a
inversion process will not take place if a substring for a
pair overlaps any other substring of previous all the pair.
Now the substring for the 2nd pair [(3,4) and (4,5)]
overlaps the substring for the pair [(1,2) and (5,6)], so
no inversion of string will take place for the pair [(3,4)
and (4,5)] and the pair will be removed from the list.
The resulting list then becomes
[(1,2) and (5,6)], [(9,1) and (2,3)] and [(8,9) and (6,7)]

The substring for the pair [(9,1) and (2,3)] now overlaps
with the substring for the pair [(1,2) and (5,6)], again no
inversion of string will take place. The resulting list is

[(1,2) and (5,6)] and [(8,9) and (6,7)]
Now for the pairs [(1,2) and (5,6)] and [(8,9) and (6,7)]
there is no overlap between substrings. Therefore the
modified child C2 obtained from C1 are as follows

 C1 = (1 |5 4 3 2 |6 |7 8| 9)
 and
 C2 = (1 5 4 3 2 6 |8 7| 9)

Regarding the number of pairs (say, pa) to be taken for
the 1st iteration and for number of cities within 100, we
have found experimentally that pa’s are 3, 3, 4, 5 and 7
for number of cities 24, 29, 48, 70 and 100 respectively.
These values can be achieved by an equation of the form
 pa=[(n+32)/20]
where n is the number of cities.
This is not kept constant over the generations, rather it is
varied in cycles of appropriate intervals linearly from

1) [pa] to 0.0 for iteration 1 to [z/3]
2) 0.0 to [pa] for iteration [z/3] to [2×z/3]
3) [pa] to 0.0 for iteration [2×z/3] to [z]

where z is the total no. of iterations performed in one
run.

This kind of variation helps in exploring the search
space efficiently and prevents the GA from getting stuck
in the local optima. Note that this is an upgraded version
of Simple Inversion Mutation [6], which is discussed
later. But, it can’t be called mutation operator, as it is a
decisive process not a random one.

2.3. Natural Selection

This operator is designed by a common method of
natural selection in GA called the Roulette Wheel
method [3]. The Roulette Wheel method simply chooses
the strings in a statistical fashion based solely upon their
relative (i.e., percentage) cost or fitness values. So, the
natural selection operator in this GA randomly chooses
strings from the current population with probability
inversely proportional to their cost.

2.4. Crossover

Before presenting our new crossover strategy, a closely
related existing method known as Order based crossover
is described briefly. It has been observed to be one of
the bests in terms of quality and speed, and yet is simple
to implement.

Order Based Crossover (OBC). The order based
crossover operator [7] selects at random several
positions in one of the parent tours, and the order of the
cities in the selected positions of this parent is imposed
on the other parent to produce one child. The other child
is generated in an analogous manner for the other
parent.

Modified Order Crossover. A randomly chosen
crossover point divides the parent strings in left and
right substrings. The right substrings of the parents s1
and s2 are selected. After selection of cities the process
is the same as the order crossover. Only difference is
that instead of selecting random several positions in a
parent tour all the positions to the right of the randomly
chosen crossover point are selected.

For example with the following parents and crossover
point

s1 = (1 2 3 4 |6 9 8 5 7)
and

s2 = (2 1 9 8 |5 6 3 7 4),

after position selection
s1 = (1 2 * * * 9 8 * *)

and
s2 = (2 1 * * * * 3 * 4)

we obtain the generated pair of children as

0-7695-2128-2/04 $20.00 (C) 2004 IEEE

b1 = (1 2 5 6 3 9 8 7 4)
 and
b2 = (2 1 6 9 8 5 3 7 4)

Clearly this method allows only the generation of valid
strings.

2.5. Knowledge Based Neighborhood Swapping

This is a novel deterministic operation injected in the
typical structure of elitist GA. This works on the set of
all strings obtained from crossover. For a string s in the
population a random index value i is generated (1<i<S ,
where S is string length). Now for city (i-1) and city
(i+1) find the city that is nearest to both the cities. Let
its index be j. In this search the cities (i-1) and (i+1) are
excluded. Then in s, swap the city at ith position with
that at jth position. This operation is repeated for all the
strings in the population.

Index j is obtained as follows:
1) calculate the distance from the cost matrix for a
particular city (say c) as
 X(c)= distance((i-1), c) + distance((i+1), c)
2) repeat step 1 for all the cities except city(i-1) and
city(i+1)
3) find the city c for which X(c) is minimum and make
j=c
Since it is a deterministic operator based on the cost
matrix, it helps the stochastic environment of the
working of GA to derive an extra boost in the positive
direction. As this operator is applied only once on every
string for a random city index, not on all the cities in
that string, this operation is not expensive.

2.6. Mutation

For the TSP the simple inversion mutation (SIM) and
insertion mutation (ISM) are the leading performers [6].
Here simple inversion mutation (SIM) is performed on
each string as follows:
This operator selects randomly two cut points in the
string, and it reverses the substring between these two
cut points. For example consider the tour
 (1 2 3 4 5 6 7 8)
and suppose that the first cut point is chosen randomly
between 2nd city and 3rd city, and the second cut point
between the 5th city and the 6th city. Then the resulting
strings will be
 P = (1 2 |3 4 5| 6 7 8)

C = (1 2 |5 4 3| 6 7 8)

The mutation probability it is not kept constant over the
generations. Rather it is varied in cycles of appropriate

intervals [1] (linearly from 0.06 to 0.003 where n is the
number of cities).

3. Time complexity of proposed GA

The time complexity of the algorithm SWAP_GATSP is
given by O(k•N•n) where k is the number of
generations, N is the population size and n is the data
size or the number of cities.

4. Experimental Results

SWAP_GATSP was implemented in Matlab 5.1 on
Pentium-4 (1.7 GHz) and the results were compared
with those obtained from the survey of Larranaga [6]
and [1]. Results are also compared with a public domain
TSP solver based on GA by Michael Lalena [5] having
the proclamation of being the fastest among known
solvers.

Table 1 summarizes the final results obtained by
running the Multiple Inversion GA on several
symmetric TSP instances containing 24, 29, 48, 70 and
100 cities, taken from the TSPLIB [4]. The best results
from 30 run are listed here. The number of populations
is taken 10 for Grtschels24.tsp and bayg29.tsp. The
population is 24 for 48 cities, 30 for 70 cities and 40 for
100 cities. Crossover probability was fixed at 0.85
across the generations. As discussed in Section 2.6, the
mutation probability was varied linearly in with
iteration, maximum being 0.06 and minimum 0.003.
These values are experimentally obtained which gives
very good results.

For Grtschels24.tsp the previous best results for other
GAs were 1272 km [6]. For Grtschels48.tsp the previous
best result of 5074 km was with ER crossover and SIM
mutation [6]. These investigations were carried out with
population size of 200, mutation probability 0.01 and
50000 iterations [6]. The proposed approach exceeds the
previous best result as shown in Table 1 with less no. of
population size and iteration. For st70.tsp our result is
compared with GA of Lalena with best result of 895 km.
As Lalenas software is not downloadable at this instant
for some difficulties in his web site, we compared the
result with that in [1] where Lalenas GA was
downloaded at that time. In [1] it was stated that the best
result for their algorithm is 776 km for st70.tsp with
population size of 50 and 5000 iterations. GA with only
order crossover and simple inversion mutation (OX-
SIM) is implemented next as standard GA for TSP [6, 1]
for all the problems and the results are compared with
SWAP_GATSP.

0-7695-2128-2/04 $20.00 (C) 2004 IEEE

Table 1

Table 2

Table 2 shows the average results after 5000 iterations.
Here OX-SIM is implemented, but the average results
for best previous GA are taken from Larranaga [6].

The SWAP_GATSP and the GA with OX-SIM have
been compared w.r.t. computation time. Both programs
were run for 358 seconds for Grtschels48.tsp and the
fitness of fittest string is plotted with iteration as shown
in Fig 1. In 358 seconds the SWAP_GATSP has gone
through 3600 iterations and the GA with OX-SIM run
for 5000 iterations. The lower graph shows that the
optimal cost of 5046 km is achieved within 800
iterations for the SWAP_GATSP whereas cost is 6773
km for GA with OX-SIM (shown in upper graph).
Similar results are also found when the proposed
method is compared with other GAs stated in [6].

5. Conclusion

The results obtained with the newly designed genetic
operators in our algorithm are impressive, on practical

data set. Larger benchmarks are to be tested next. This
method can be easily adapted to solving the asymmetric
TSP. Experiments on comparing those results with other
existing solvers for asymmetric TSP also need to be
performed. Application of the developed
SWAP_GATSP to real life problems like DNA
fragment assembly, an important issue in
bioinformatics, should be studied. The authors are
currently working in this direction.

C

os
t i

n
km

 fo
r f

itt
es

t s
tri

ng

 G A w ith O X -S IM

 S W A P _ G A T S P

0 5 00 1 00 0 1 500 20 00 250 0 3 00 0 3 500 40 00 450 0 5 00 0
0 .4

0 .6

0 .8

1

1 .2

1 .4

1 .6

1 .8

2

2 .2
x 10

4

References

[1] Sur-Kolay S., Banerjee S., and Murthy C. A., “Flavours of
Traveling Salesman Problem in VLSI Design”, 1st Indian
International Conference on Artificial Intelligence, 2003.

[2] Garey, M. R., and Johnson, D. S.: “Computers and
Intractability: A Guide to the Theory of NP-completeness”, W.
H. Freeman and Co., San Francisco, 1979.

[3] Goldberg, D. E.: “Genetic Algorithm in Search,
Optimization and Machine Learning”, Machine Learning.
Addison-Wesley, New York, 1989.

[4] TSPLIB Homepage:
http://www.iwr.uniheidelberg.de/groups/comopt/software/TSP
LIB95/

[5] Lalena, M.: TSP solver. http://www.lalena.com/ai/tsp

[6] Larranaga, P., Kuijpers, C. M. H.,Murga, R. H., Inza, I.,
Dizdarevic, S.: “Genetic Algorithms for the Travelling
Salesman Problem: A Review of Representations and
Operators”, Artificial Intelligence Review. 13, 1999, 129-
170.

[7] Syswerda, G, “Schedule optimization using genetic
algorithms, Handbook of Genetic Algorithms”, Van Nostrand
Reinhold, New York, 1991, 332-349.

Best results for different TSPs
Prob
lem

Opti
mal

Propo
sed

[5] [1] Best
GA in
[6]

OX-
SIM

Grts
chels
24

1272 1272
(500
iter)

---- ---- 1272 1272
(8,000
iter.)

bayg
29

1610 1610
(600
iter)

---- ---- ---- 1620
(10,000
iter.)

Grts
chels
48

5046 5046
(800
iter.)

---- ---- 5074 5097
(12,000
iter.)

St70 675 685
(2000
iter.)

895 776 ---- 888
(15,000
iter.)

Kro
A
100

21282 21504
(5000
iter.)

---- ---- ---- 22,400
(25,000
iter.)

Problem Proposed
GA

Best GA
in [6]

OX-SIM

Grtschels24 1272 1274 1342
bayg29 1615 ----- 1720
Grtschels48 5110 5154 5451
St70 710 ----- 920
KroA100 21,900 ----- 23,200

No of iterations
Figure 1:Cost of fittest string Vs. Iteration for

Grtschels48.tsp

0-7695-2128-2/04 $20.00 (C) 2004 IEEE

	Select a link below
	Return to Main Menu
	Return to Previous View

