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Abstract 
This paper describes an application of genetic algorithm 
to the traveling salesman problem. New knowledge 
based multiple inversion operator and a neighborhood 
swapping operator are proposed. Experimental results 
on different benchmark data sets have been found to 
provide superior results as compared to some other 
existing methods. 
Keywords: knowledge based multiple inversion, order 
crossover, knowledge based neighborhood swapping. 
 
 
1. Introduction 
 
The Traveling Salesman Problem (TSP) is one of the top 
ten problems, which has been addressed extensively by 
mathematicians and computer scientists. Its importance 
stems from the fact there is a plethora of fields in which 
it finds applications e.g., DNA fragment assembly, 
VLSI design. The classical formulation is stated as: 
Given a finite set of cities and the cost of traveling from 
city i to city j, if a traveling salesman were to visit each 
city exactly once and then return to the home city, which 
tour would incur the minimum cost? Formally, the TSP 
may be defined as follows [1]: 
 
Let {1, 2, ... n} be the labels of the n cities and C = [ci,j] 
be a n×n cost matrix where ci,j denotes the cost of 
traveling from city i to city j. The total cost A of a TSP 
tour is given by 

A(п) = ∑
−

=

1

1

n

i
Ci,,i+1      +      C n,1            (1) 

The objective is to find a permutation of the n cities 
which has minimum cost. The TSP is a very well known 
NP-hard problem [2] and therefore any problem 
belonging to the NP-class can be formulated as a TSP 
problem. 
 
 Over decades, researchers have suggested a multitude 
of heuristic algorithms, including genetic algorithms 
(GAs) [3], for solving TSP [6]. In this article we 
propose some new operators, namely Knowledge Based 
Multiple Inversion (KBMI) and Knowledge Based 
Neighborhood Swapping (KBNS) along with a 

Modified Order Crossover for solving TSP. The 
experimental results obtained on TSP benchmarks have 
been found to be superior in terms of quality of solution 
when compared with other existing GAs [6].  
 
2. Proposed GA for TSP  
 
A new algorithm, called SWAP_GATSP, is described in 
this section for solving TSP using elitist GAs with new 
operators namely, Knowledge Based Multiple Inversion, 
Modified Order Crossover and Knowledge Based 
Swapping. The structure of the proposed 
SWAP_GATSP is presented below. 
 
begin SWAP_GATSP 
        Create initial population of tours randomly. 
         while generation_count < k do 
                   /* k = max. no. of generations.*/ 
            begin 
         KBMI  
                   Natural selection 
                  MOC 
         KBNS 

        Mutation 
        Elitism 
        Increment generation_count. 
end ; 
Output the best individual found. 

end SWAP_TSP. 
 
2.1. String representation and Cost function 
 
In order to find the shortest tour for a given set of n 
cities using GAs, the path representation [6] is 
more natural for TSP and has been well studied. In 
this encoding, the string representation for a TSP 
tour is an array of n integers which is a permutation 
of {1, 2, …… n}. The objective is to find a string 
with minimum cost. In the following subsections 
the new genetic operators employed in the 
proposed GA are described. 
 
2.2. Knowledge Based Multiple Inversion  
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      In this process for each string the distance between 
every two consecutive cities is calculated from the cost 
matrix and the distances are sorted in descending order. 
A record is kept so that one can find which distance 
corresponds to which two cities. 
 Suppose for a string  (1 2 3 4 5 6 7 8 9) the sorted 
distances are between cities 
 (1,2), (5,6), (3,4), (4,5), (9,1), (2,3), (8,9), (6,7) and 
(7,8). 
Now the substring between the highest two distances 
(1,2) and (5,6) is inversed, resulting in the parent (P) and 
the child (C) as follows 
 
                                  P1 = (1 |2 3 4 5 |6 7 8 9) 
       and 
                                  C1 = (1 |5 4 3 2 |6 7 8 9) 
 
This inversion procedure is repeated for pairs [(3,4) and 
(4,5)], [(9,1) and (2,3)], [(8,9) and (6,7)] and so on for 
string with higher no of cities with the condition that a 
inversion process will not take place if a substring for a 
pair overlaps any other substring of previous all the pair. 
Now the substring for the 2nd pair [(3,4) and (4,5)] 
overlaps the substring for the pair [(1,2) and (5,6)], so 
no inversion of string will take place for the pair [(3,4) 
and (4,5)] and the pair will be removed from the list. 
The resulting list then becomes 
[(1,2) and (5,6)], [(9,1) and (2,3)] and [(8,9) and (6,7)] 

 
The substring for the pair [(9,1) and (2,3)] now overlaps 
with the substring for the pair [(1,2) and (5,6)], again no 
inversion of string will take place. The resulting list is   

[(1,2) and (5,6)] and [(8,9) and (6,7)] 
Now for the pairs [(1,2) and (5,6)] and [(8,9) and (6,7)] 
there is no overlap between substrings. Therefore the 
modified child C2 obtained from C1 are as follows 
 
   C1 = (1 |5 4 3 2 |6 |7 8| 9) 
   and 
  C2 = (1 5 4 3 2 6 |8 7| 9) 
 
Regarding the number of pairs (say, pa) to be taken for 
the 1st iteration and for number of cities within 100, we 
have found experimentally that pa’s are 3, 3, 4, 5 and 7 
for number of cities 24, 29, 48, 70 and 100 respectively. 
These values can be achieved by an equation of the form 
  pa=[(n+32)/20]        
where n is the number of cities. 
This is not kept constant over the generations, rather it is 
varied in cycles of appropriate intervals linearly from 

1) [pa] to 0.0 for iteration 1 to [z/3] 
2) 0.0 to [pa] for iteration [z/3] to [2×z/3] 
3) [pa] to 0.0 for iteration [2×z/3] to [z] 

where z is the total no. of iterations performed in one 
run. 

This kind of variation helps in exploring the search 
space efficiently and prevents the GA from getting stuck 
in the local optima. Note that this is an upgraded version 
of Simple Inversion Mutation [6], which is discussed 
later. But, it can’t be called mutation operator, as it is a 
decisive process not a random one. 
 
2.3. Natural Selection 
 
This operator is designed by a common method of 
natural selection in GA called the Roulette Wheel 
method [3]. The Roulette Wheel method simply chooses 
the strings in a statistical fashion based solely upon their 
relative (i.e., percentage) cost or fitness values. So, the 
natural selection operator in this GA randomly chooses 
strings from the current population with probability 
inversely proportional to their cost. 
 
2.4. Crossover 
 
Before presenting our new crossover strategy, a closely 
related existing method known as Order based crossover 
is described briefly. It has been observed to be one of 
the bests in terms of quality and speed, and yet is simple 
to implement.  
 
Order Based Crossover (OBC). The order based 
crossover operator [7] selects at random several 
positions in one of the parent tours, and the order of the 
cities in the selected positions of this parent is imposed 
on the other parent to produce one child. The other child 
is generated in an analogous manner for the other 
parent.  

 
Modified Order Crossover.  A randomly chosen 
crossover point divides the parent strings in left and 
right substrings. The right substrings of the parents s1 
and s2 are selected. After selection of cities the process 
is the same as the order crossover. Only difference is 
that instead of selecting random several positions in a 
parent tour all the positions to the right of the randomly 
chosen crossover point are selected. 
 
For example with the following parents and crossover 
point 

s1 = (1 2 3 4 |6 9 8 5 7) 
and  

s2 = (2 1 9 8 |5 6 3 7 4), 
 

after position selection  
s1 = (1 2 * * * 9 8 * *) 

and 
s2 = (2 1 * * * * 3 * 4) 
 

we obtain the generated pair of children as 
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b1 = (1 2 5 6 3 9 8 7 4) 
 and 
b2 = (2 1 6 9 8 5 3 7 4) 
 

Clearly this method allows only the generation of valid 
strings.  
 
2.5. Knowledge Based Neighborhood Swapping 
 
This is a novel deterministic operation injected in the 
typical structure of elitist GA. This works on the set of 
all strings obtained from crossover. For a string s in the 
population a random index value i is generated ( 1<i<S , 
where S is string length). Now for city (i-1) and city 
(i+1) find the city that is nearest to both the cities. Let 
its index be j. In this search the cities (i-1) and (i+1) are 
excluded. Then in s, swap the city at ith position with 
that at jth position. This operation is repeated for all the 
strings in the population. 
 
Index j is obtained as follows:  
1) calculate the distance from the cost matrix for a 
particular city (say c) as 
         X(c)= distance((i-1), c) + distance((i+1), c) 
2) repeat step 1 for all the cities except city(i-1) and 
city(i+1) 
3) find the city c for which X(c) is minimum and make 
j=c 
Since it is a deterministic operator based on the cost 
matrix, it helps the stochastic environment of the 
working of GA to derive an extra boost in the positive 
direction. As this operator is applied only once on every 
string for a random city index, not on all the cities in 
that string, this operation is not expensive. 
 
2.6. Mutation 
 
For the TSP the simple inversion mutation (SIM) and 
insertion mutation (ISM) are the leading performers [6]. 
Here simple inversion mutation (SIM) is performed on 
each string as follows: 
This operator selects randomly two cut points in the 
string, and it reverses the substring between these two 
cut points. For example consider the tour                                        
  (1 2 3 4 5 6 7 8) 
and suppose that the first cut point is chosen randomly 
between 2nd city and 3rd city, and the second cut point 
between the 5th city and the 6th city. Then the resulting 
strings will be 
 P = (1 2 |3 4 5| 6 7 8) 

C = (1 2 |5 4 3| 6 7 8)  
 
The mutation probability it is not kept constant over the 
generations. Rather it is varied in cycles of appropriate 

intervals [1] (linearly from 0.06 to 0.003 where n is the 
number of cities).  
 
 
3. Time complexity of proposed GA 
 
The time complexity of the algorithm SWAP_GATSP is 
given by O(k•N•n) where k is the number of 
generations, N is the population size and n is the data 
size or the number of cities. 
 
4. Experimental Results 
 
SWAP_GATSP was implemented in Matlab 5.1 on 
Pentium-4 (1.7 GHz) and the results were compared 
with those obtained from the survey of Larranaga [6] 
and [1]. Results are also compared with a public domain 
TSP solver based on GA by Michael Lalena [5] having 
the proclamation of being the fastest among known 
solvers.  
 
Table 1 summarizes the final results obtained by 
running the Multiple Inversion GA on several 
symmetric TSP instances containing 24, 29, 48, 70 and 
100 cities, taken from the TSPLIB [4]. The best results 
from 30 run are listed here. The number of populations 
is taken 10 for Grtschels24.tsp and bayg29.tsp. The 
population is 24 for 48 cities, 30 for 70 cities and 40 for 
100 cities. Crossover probability was fixed at 0.85 
across the generations. As discussed in Section 2.6, the 
mutation probability was varied linearly in with 
iteration, maximum being 0.06 and minimum 0.003. 
These values are experimentally obtained which gives 
very good results.  
 
For Grtschels24.tsp the previous best results for other 
GAs were 1272 km [6]. For Grtschels48.tsp the previous 
best result of 5074 km was with ER crossover and SIM 
mutation [6]. These investigations were carried out with 
population size of 200, mutation probability 0.01 and 
50000 iterations [6]. The proposed approach exceeds the 
previous best result as shown in Table 1 with less no. of 
population size and iteration. For st70.tsp our result is 
compared with GA of Lalena with best result of 895 km. 
As Lalenas software is not downloadable at this instant 
for some difficulties in his web site, we compared the 
result with that in [1] where Lalenas GA was 
downloaded at that time. In [1] it was stated that the best 
result for their algorithm is 776 km for st70.tsp with 
population size of 50 and 5000 iterations. GA with only 
order crossover and simple inversion mutation (OX-
SIM) is implemented next as standard GA for TSP [6, 1] 
for all the problems and the results are compared with 
SWAP_GATSP. 
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Table 1 

 
Table 2 

 
 
Table 2 shows the average results after 5000 iterations. 
Here OX-SIM is implemented, but the average results 
for best previous GA are taken from Larranaga [6]. 
   
The SWAP_GATSP and the GA with OX-SIM have 
been compared w.r.t. computation time. Both programs 
were run for 358 seconds for Grtschels48.tsp and the 
fitness of fittest string is plotted with iteration as shown 
in Fig 1. In 358 seconds the SWAP_GATSP has gone 
through 3600 iterations and the GA with OX-SIM run 
for 5000 iterations. The lower graph shows that the 
optimal cost of 5046 km is achieved within 800 
iterations for the SWAP_GATSP whereas cost is 6773 
km for GA with OX-SIM (shown in upper graph). 
Similar results are also found when the proposed 
method is compared with other GAs stated in [6]. 
 
5. Conclusion 
 
The results obtained with the newly designed genetic 
operators in our algorithm are impressive, on practical 

data set. Larger benchmarks are to be tested next. This 
method can be easily adapted to solving the asymmetric 
TSP. Experiments on comparing those results with other 
existing solvers for asymmetric TSP also need to be 
performed. Application of the developed 
SWAP_GATSP to real life problems like DNA 
fragment assembly, an important issue in 
bioinformatics, should be studied. The authors are 
currently working in this direction.  
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Best results for different TSPs 
Prob
lem 

Opti
mal 
 

Propo
sed 

[5]  [1] Best 
GA in 
[6] 

OX-
SIM 

Grts
chels
24 

1272  1272  
(500 
iter) 

---- ---- 1272  1272 
(8,000 
iter.) 

bayg
29 

1610 1610 
(600 
iter) 

---- ---- ---- 1620 
(10,000 
iter.) 

Grts
chels
48 

5046 5046 
(800 
iter.) 

---- ---- 5074  5097 
(12,000 
iter.) 

St70 675 685 
(2000 
iter.) 

895 776  ---- 888 
(15,000 
iter.) 

Kro
A 
100 

21282 21504 
(5000 
iter.) 

---- ---- ---- 22,400 
(25,000 
iter.) 

Problem Proposed 
GA  

Best GA 
in [6] 

OX-SIM 

Grtschels24 1272 1274 1342 
bayg29 1615 ----- 1720 
Grtschels48 5110 5154 5451 
St70 710 ----- 920 
KroA100 21,900 ----- 23,200 

No of iterations 
Figure 1:Cost of fittest string Vs. Iteration for    

Grtschels48.tsp 
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